Fractional Differential-Algebraic Systems with Delay: Computation of Final Dimension Initial Conditions and Inputs for Given Outputs

Author(s):  
Zbigniew Zaczkiewicz
2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


2021 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Azmat Ullah Khan Niazi ◽  
Jiawei He ◽  
Ramsha Shafqat ◽  
Bilal Ahmed

This paper concerns with the existence and uniqueness of the Cauchy problem for a system of fuzzy fractional differential equation with Caputo derivative of order q∈(1,2], 0cD0+qu(t)=λu(t)⊕f(t,u(t))⊕B(t)C(t),t∈[0,T] with initial conditions u(0)=u0,u′(0)=u1. Moreover, by using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several examples are given which show the applicability of fuzzy fractional differential equations.


2020 ◽  
Vol 4 (3) ◽  
pp. 40
Author(s):  
Jocelyn Sabatier

In the field of fractional calculus and applications, a current trend is to propose non-singular kernels for the definition of new fractional integration and differentiation operators. It was recently claimed that fractional-order derivatives defined by continuous (in the sense of non-singular) kernels are too restrictive. This note shows that this conclusion is wrong as it arises from considering the initial conditions incorrectly in (partial or not) fractional differential equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hoa Ngo Van ◽  
Vu Ho

The aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are discussed. Finally, we provide an example to demonstrate our main results.


Author(s):  
Sambit Das ◽  
Anindya Chatterjee

Fractional order integrodifferential equations cannot be directly solved like ordinary differential equations. Numerical methods for such equations have additional algorithmic complexities. We present a particularly simple recipe for solving such equations using a Galerkin scheme developed in prior work. In particular, matrices needed for that method have here been precisely evaluated in closed form using special functions, and a small Matlab program is provided for the same. For equations where the highest order of the derivative is fractional, differential algebraic equations arise; however, it is demonstrated that there is a simple regularization scheme that works for these systems, such that accurate solutions can be easily obtained using standard solvers for stiff differential equations. Finally, the role of nonzero initial conditions is discussed in the context of the present approximation method.


Sign in / Sign up

Export Citation Format

Share Document