An Abstract Model for Proving Safety of Autonomous Urban Traffic

Author(s):  
Martin Hilscher ◽  
Maike Schwammberger
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maike Schwammberger

Abstract As automated driving techniques are increasingly capturing the market, it is particularly important to consider vital functional properties of these systems. We present an overview of an approach that uses an abstract model to logically reason about properties of autonomous manoeuvres at intersections in urban traffic. The approach introduces automotive-controlling timed automata crossing controllers that use the traffic logic UMLSL (Urban Multi-lane Spatial Logic) to reason about traffic situations. Safety in the context of collision freedom is mathematically proven. Liveness (something good finally happens) and fairness (no queue-jumping) are examined and verified using a model-checking tool for timed automata, UPPAAL.


2018 ◽  
Vol 744 ◽  
pp. 143-169 ◽  
Author(s):  
Maike Schwammberger
Keyword(s):  

2016 ◽  
Vol 47 (11) ◽  
pp. 989-1011
Author(s):  
Sicheng Li ◽  
W. Wang ◽  
Y. H. Zhao ◽  
X. G. Dong

2015 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Hamid Reza Samadi ◽  
Mohammad Reza Samadi

Due to the development of cities as well as rapid population growth, urban traffic is increasing nowadays. Hence, to improve traffic flow, underground structures such as metro, especially in metropolises, are inevitable. This paper is a research on the twin tunnels Of Isfahan's metro between Shariaty station and Azadi station from the North towards the South. In this study, simultaneous drilling of subway's twin tunnels is simulated by means of Finite Difference Method (FDM) and FLAC 3D software. Moreover, the lowest distance between two tunnels is determined in a way that the Law of Super Position could be utilized to manually calculate the amount of surface subsidence, resulted by drilling two tunnels, by employing the results of the analysis of single tunnels without using simultaneous examination and simulation. In this paper, this distance is called "effective distance". For this purpose, first, the optimum dimensions of the model is chosen and then, five models with optimum dimensions will be analyzed separately, each of which in three steps. The results of analyses shows that the proportions (L/D) greater than or equal 2.80, the Law of Super Position can be applied for prediction of surface subsidence, caused by twin tunnels' construction


Sign in / Sign up

Export Citation Format

Share Document