Emergence of Sustainable Approaches for Functional Materials: Cashew Nut Shell Liquid and Other Relevant Crop-Based Renewable Resources

2017 ◽  
pp. 1-17
Author(s):  
Srinivas Abbina ◽  
Parambath Anilkumar
2016 ◽  
Vol 2 (2) ◽  
pp. 55-61
Author(s):  
N. T. Nevaditha ◽  
S. Gopalakrishnan ◽  
C. V. Mythili

Biomaterials, chemicals and energy from renewable resources have been the object of considerable interest in recent years. Vegetable oils are one of the cheapest and most abundant biological sources available in large quantities and their use as starting materials has numerous advantages such as low toxicity, inherent biodegradability and high purity. They are considered to be one of the most important classes of renewable resources for the production of bio-based thermosets. As a substitute to the use of conventional reinforcing synthetic resins, biobased resins were synthesized from cardanol, renewable and low cost industrial grade oil obtained by vacuum distillation of Cashew Nut Shell Liquid (CNSL), an abundant agricultural byproduct of cashew industry. On the other hand to further expand the field of application, cardanol-based novolac scaffolds, used in the formulation of thermosetting resins by blending with a conventional epoxy resin, especially designed to be compatible with conventional bisphenol- A epoxy resins. In the present study resins have been synthesized by condensing diazotized p-anisidine cardanol dye with urea, resorcinol and furfural as condensing agent.. The resins have been characterised by FT-IR, 1H-NMR and XRD studies. Thermal behavior of the resins has been studied by Thermogravimetric Analysis (TGA) and Differential thermal analysis (DTA). The DTA, SEM and XRD data indicated the percentage of crystallinity associated with the thermal stability of the resins.


2016 ◽  
Vol 88 (1-2) ◽  
pp. 17-27 ◽  
Author(s):  
Egid B. Mubofu

AbstractThe amount of waste generated in cashew nut processing factories has caused serious problems for a long time. However, this situation is about to change because they are being turned into an opportunity by a variety of bio-based chemicals. Todate, cashew nut shells (CNS) have proven to be among the most versatile renewable resource as they produce cashew nut shell liquid (CNSL). CNSL which is a dark reddish brown viscous liquid (ca. 30–35 wt%) is extracted from the soft honeycomb of the CNS. The shells have been regarded as a by-product of the cashew industry though now it is a cheaper source of natural unsaturated phenols. CNSL offers a multitude of interesting possibilities for the synthesis of speciality chemicals, high value products and polymers. Our recent research efforts have demonstrated that its constituents can be transformed into diverse functional chemicals. This paper reports some key results on how cashew nut shells (an agro waste from cashew nut processing factories) have been employed to produce several functional materials and chemicals. The materials that are highlighted include the synthesis of 3-propylphenol from cardanol and anacardic acid, some polymers prepared from CNSL components, heterogeneous catalysts prepared using CNSL as a templating agent and anacardic acid capped chalcogenide nanoparticles.


2007 ◽  
Vol 15 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Lubi C. Mary ◽  
Eby Thomas Thachil

2021 ◽  
pp. 009524432199040
Author(s):  
Isabela Pinto Ferreira ◽  
Alex da Silva Sirqueira ◽  
Taiane Andre dos Santos ◽  
Monica Feijo Naccache ◽  
Bluma Guenther Soares

Research on bio-plasticizers is a topic of strategic interest in polymer blends. A bio-plasticizer, cashew nut shell liquid (CNSL), was studied in blends of ethylene-vinyl acetate copolymer (EVA) and styrene-butadiene-styrene copolymer (SBS). In the literature does not report the addition of plasticizers to SBS/EVA blend. Statistical analyses showed that there was a significant difference in mechanical properties (tension at break, hardness and elongation at break) vs. the unplasticized blend. The minimum CNSL concentration required for a statistical difference was 10 phr. The Carreau-Yasuda rheological model was used to obtain rheological parameters in these blends. The plasticizing influence of CNSL was confirmed by rheology. The effects of CNSL on creep and recovery were evaluated for the SBS/EBA blends. Burger´s model explained well SBS/EVA creep compliance. Moreover, its parameters (Newtonian dashpots and Hookean springs) were evaluated as a function of the CNSL concentrations. The bio-plasticizer concentration influenced significant correlations among the rheological creep-recovery tests, thus enabling a considerable increase in the elastic phase. Experimental creep-recovery data and curve fit were in good agreement.


Sign in / Sign up

Export Citation Format

Share Document