Tensile Properties of Epoxy Composites Reinforced with Continuous PALF Fibers

Author(s):  
Gabriel O. Glória ◽  
Giulio R. Altoé ◽  
Ygor M. Moraes ◽  
Rômulo L. Loyola ◽  
Frederico M. Margem ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1282
Author(s):  
M.J. Suriani ◽  
Fathin Sakinah Mohd Radzi ◽  
R.A. Ilyas ◽  
Michal Petrů ◽  
S.M. Sapuan ◽  
...  

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.


Author(s):  
M J M Ridzuan ◽  
M S Abdul Majid ◽  
A Khasri ◽  
E M Cheng ◽  
M H Sulaiman ◽  
...  

1997 ◽  
Vol 16 (10) ◽  
pp. 946-966 ◽  
Author(s):  
S. Ramakrishna ◽  
N. K. Cuong ◽  
H. Hamada

2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


2019 ◽  
Vol 130 ◽  
pp. 01040 ◽  
Author(s):  
Yuniar Ratna Pratiwi ◽  
Indah Widiastuti ◽  
Budi Harjanto

The aim of this article is to evaluate water absorption in bamboo fiber composites. Bamboo is hydrophilic, means that it easily absorbs water. In this study the bamboo fiber-based composites were developed using hand lay up method, with epoxy resin as the matrix constituent. Water absorption characteristics of specimens of bamboo composite and epoxy were determined from water immersion tests at several temperatures. Gravimetric analysis was performed to determine the moisure absorbed as a function of time at two different temperatures: 25 ºC and 50 C. The diffusivity of water in an epoxy bamboo composite was determined after reaching saturation point. During room temperature soaking, epoxy specimen showed the characteristic of Fickian behavior. Similar immersion tests on bamboo-epoxy composites followed nonfickian behavior. Changes in the mechanical properties of material due to water absorption were evaluated from tensile testing on materials with varied water content. It was found that the waterabsorption in all samples reduced the tensile properties. The degradation of tensile properties was greater with an increasing temperature of immersion. The results of this study emphasize the importance ofconsidering deterioration of mechanical properties in the bamboo epoxy composites during their application in water and possibly in humid environment.


2017 ◽  
Author(s):  
S. M. M. Amir ◽  
M. T. H. Sultan ◽  
M. Jawaid ◽  
F. Cardona ◽  
M. R. Ishak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document