scholarly journals Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1282
Author(s):  
M.J. Suriani ◽  
Fathin Sakinah Mohd Radzi ◽  
R.A. Ilyas ◽  
Michal Petrů ◽  
S.M. Sapuan ◽  
...  

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.

2020 ◽  
Vol 9 (1) ◽  
pp. 8-14
Author(s):  
Wida Banar Kusumaningrum ◽  
Sasa Sofyan Munawar

Polypropylene composites reinforcing with natural fiber is potentially applied for automotive particularly on interior part design. Those kind of composites were contributed on renewable material, rapid rate biodegradation, and low cost of production compared to synthetic fiber. Furthermore, the mechanical properties including strenghtness, young modulus, and thermal stability have revealed good performance than glass fiber. Fiber which were fibrillated and have high aspect ratio that coresspond to diameter and lenght ratio of the fiber were noticed as enhancement factor for mechanical properties. Fiber fibrillation processing into microfibrillated cellulose (MFC) attempts for widening surface area of the fiber that improve polymer matrices compatibility. MFC from empty fruit bunches (EFB) and oil palm frond (FB) fibers were performed as pulp by mechanically and chemically treatments. Chemically treatment was conducted with bleach and unbleach procedure. Polypropylene with fiber was mixed using kneader, and injection for molding process. Manufacturing uses needs appropriate size presition, moderate lead time, and low defect. Heat deflection temperature (HDT) provide information for plastic material on indicating temperature condition effect to material deformation during normal loading. Material of origin, additive or filler size, and molding temperature were directly corelated to the HDT performance. Initial temperature of HDT exhibits different value for different kind of fillers and fiber treatments. PP/EFB composite by mechanical treatment gives high value of HDT compared to the fiber processing by chemical treatment both with bleach and unbleach process. Similar result have been performed in PP/FB composites related to initial temperature. PP/ EFB composite with 30% of fiber loading represent HDT in 149.4°C, and for PP/ FB composite with 30% fiber loading gives 150.7°C. By the addition of fiber loading could improve the HDT value of the composites.


2020 ◽  
Vol 305 ◽  
pp. 28-35
Author(s):  
Anslem Wong Tsu An ◽  
Sujan Debnath ◽  
Vincent Lee Chieng Chen ◽  
Moola Mohan Reddy ◽  
Alokesh Pramanik

In recent years, studies regarding natural fiber reinforced composites have been increased as they are biodegradable with good mechanical performance therefore can help to overcome the environmental issue. As the natural fibers are easy to obtain, many industries have started to make use of natural fiber composites which are light in weight and possess good mechanical properties. However, the natural fiber composites also possess certain limitations most importantly their high moisture absorption ability which makes them incompatible at degradable environment. The fiber constituents of natural fiber composite may have different type of interactions at different environmental conditions. In addition, the involvement of nanoparticles in the composite may be the solution to overcome the deficiencies. In this research, the degradation behaviour of Oil palm empty fruit bunch (OPEFB) fibers reinforced epoxy composites upon exposure to degradable environmental conditions and the effect of adding nanoparticles have been studied. The tensile tests were conducted before and after the exposure to different environmental conditions including plain water, moist soil, brine solution, and cooking oil. Results shows that the addition of 10wt% of OPEFB fiber to the epoxy composites had improved the mechanical tensile strength up to 15.97% and composites exposed to brine solution have the most prominent sign of degradation in mechanical properties in both composites with and without nanosilica. Nevertheless, the composites with nanosilica have shown up to 24.28% improvement in tensile strength after exposure to different environmental conditions. The improvement were attributed due to filling the voids of the composites with nanosilica and good interfacial adhesion between the nanofiller, fiber, and matrix.


2016 ◽  
Vol 846 ◽  
pp. 665-672
Author(s):  
Yoon Yee Then ◽  
Ibrahim Nor Azowa ◽  
Norhazlin Zainuddin ◽  
Buong Woei Chieng ◽  
Chern Chiet Eng ◽  
...  

The issue related to relatively poor interfacial adhesion between hydrophilic natural fiber and hydrophobic thermoplastic remain as an obstacle in natural fiber/thermoplastic biocomposites. Consequently, surface treatment of fiber is of important to impart adhesion. The present work used consecutive superheated steam-alkali treatment to treat the oil palm mesocarp fiber (OPMF) prior to biocomposite fabrication. The biocomposites made up of 70 wt% treated OPMF and 30 wt% poly (butylene succinate) (PBS) were prepared by melt blending technique in a Brabender internal mixer followed by hot-press moulding into 1 mm sheets. A silane coupling agent of (3-aminopropyl) trimethoxysilane (APTMS) was also added to the biocomposite during the process of compounding to promote interfacial adhesion and enhance the properties of biocomposites. The results showed that the biocomposite containing 2 wt% APTMS showed maximum enhancement in tensile strength (89%), tensile modulus (812%) and elongation at break (52%) in comparison to that of untreated OPMF/PBS biocomposite. The SEM observation of the tensile fracture surface revealed that APTMS improved the interfacial adhesion between treated OPMF and PBS. It can be deduced that the presence of APTMS can improve the adhesion between hydrophilic fiber and hydrophobic thermoplastic, and thus increased the tensile properties of the biocomposite.


2017 ◽  
Author(s):  
S. M. M. Amir ◽  
M. T. H. Sultan ◽  
M. Jawaid ◽  
F. Cardona ◽  
M. R. Ishak ◽  
...  

2021 ◽  
Vol 34 ◽  
pp. 149-156
Author(s):  
Nik N. Nasri ◽  
Nazmi M. Nawi ◽  
Azhari S. Baharuddin ◽  
Saripa M. Lazim

The potential use of natural fibre extracted from oil palm empty fruit bunches has gained wide attention among researchers. This natural fibre comes from fibrous strands which form fibre bundle after shredding process at a mill. The measurement of tensile properties is important to understand the mechanical performance of this fibre bundle. This study was undertaken to determine the tensile properties of the fibre bundle from oil palm empty fruit bunch (OPEFB). Fibrous strands of the OPEFB extracted from shredded empty fruit bunches were twisted to form fibre bundle specimens at different diameters varying from 1 to 5 mm. The tensile properties measured in this study including tensile strength, tensile load and tensile modulus. The measurements were performed using Instron Universal Test Machine (IUTM) model 5000. From the results, it was found that the specimens at 1 and 5 mm in diameter required 71.25 and 429.68 N of the tensile load to break, respectively. The specimen with 1 mm in diameter recorded the highest tensile strength of 90.72 MPa while the specimen with 5 mm in diameter recorded only 21.88 MPa. The highest tensile modulus with value of 662.50 MPa was obtained from the specimen with 1 mm in diameter while the specimen with 5 mm in diameter had the tensile modulus value of 157.47 MPa. It was also found that the tensile strength and tensile modulus decreased when the diameter of the specimens increased. The findings reported in this study can serve as an engineering basis for the design specification in the development of the future in-silo composting machine.


2016 ◽  
Vol 37 (19) ◽  
pp. 1202-1216 ◽  
Author(s):  
Alejandra Constante ◽  
Selvum Pillay

The demand for natural fiber composites in the automotive industry in both Europe and the United States has been forecasted to increase in the coming years. The natural fiber composites based on highly commercialized fibers such as flax, hemp, and sisal has grown to become an important sector of polymeric composites. However, little attention has been addressed to expanding natural fiber composites to include new sources of emerging natural reinforcements, such as reclaimed algae fibers, that have a multiple environmental benefits. Not only are extracted algae fibers biodegradable, the reclamation process has the added benefit of restoring health of waterways choked with algae. This study focuses on the processability of algae fiber–epoxy composites. Short fibers, chemically extracted from raw reclaimed algae, were prepared for natural fiber composite products in two ways. First, randomly oriented mats were produced using the wet-laid process to create layered, compression-molded laminates. Second, loose fibers were dispersed directly into the thermoset matrix to produce a bulk molding compound that was further compression molded into composite lamina. The effect of processing variables such as compaction pressure, temperature, and time were addressed. Moreover, the effect of fiber volume fraction ( υf) and fiber form were considered. Enhanced mechanical properties were found when 56% υf algae fiber was used for the compression-molded laminates composite. This variant exhibited an improvement on the flexural and tensile modulus of 70% and 86% when compared to the neat epoxy. However, the volume of porosity on the same variant was 11% due to lack of compression in some of the fibers. The effect of porosity on the theoretical stiffness was estimated by using the Cox–Krenchel model. Furthermore, an empirical exponential model was formulated to characterize the multi-scale effect of compaction pressure on the overall fiber volume fraction, υf.


Sign in / Sign up

Export Citation Format

Share Document