Effects of Friction Stir Process on the Tensile Properties of AZ61 Magnesium Alloy at Room Temperature to 200 °C

2012 ◽  
pp. 525-529
Author(s):  
Hsiang-Ching Chen ◽  
Truan-Sheng Lui ◽  
Li-Hui Chen ◽  
Fei-Yi Hung
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3168
Author(s):  
Xicai Luo ◽  
Haolin Liu ◽  
Limei Kang ◽  
Jielin Lin ◽  
Yifei Liu ◽  
...  

The stretch formability behavior of an AZ61 magnesium alloy plate produced by multi-pass friction stir processing (M-FSP) was investigated, with the applied load vs. displacement curves recorded during Erichsen cupping tests at different punching speeds at room temperature. The stretch formability of M-FSP AZ61 magnesium alloy was significantly enhanced, compared with that of its cast counterpart. The highest Erichsen index of 3.7 mm was obtained at a punching speed of 0.1 mm/min. The improved stretch formability was mainly attributed to the grain refinement stemming from the M-FSP and the presence of extension twinning to accommodate deformation during Erichsen cupping testing.


2010 ◽  
Vol 433 ◽  
pp. 241-246 ◽  
Author(s):  
Yoshimasa Takayama ◽  
Itsuki Takeda ◽  
Toshiya Shibayanagi ◽  
Hajime Kato ◽  
Kunio Funami

Superplasticity in an AZ80 magnesium alloy subjected to friction stir processing (FSP) has been investigated. FSP was carried out at two traveling speeds of 150mm/min and 300mm/min for grain refinement. Optical microscopy on cross section to processing direction revealed obvious differences in size and feature between the stir zones at the two traveling speeds. The hardness of FSPed sample at the room temperature was about 30HV higher than that of as-received one. The maximum stress of the FSPed sample was reduced remarkably at lower strain rates compared with those of the as-received one at 573K and 673K. On the other hand, the elongation to failure of the FSPed sample showed ten to thirteen times larger than that of the as-received one at 573K and low strain rates. Further surface morphology near the fracture tip was observed by scanning electron microscopy to discuss deformation mechanism at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document