Energy-aware Migration of Virtual Machines in a Cluster

Author(s):  
Dilawaer Duolikun ◽  
Shigenari Nakamura ◽  
Ryo Watanabe ◽  
Tomoya Enokido ◽  
Makoto Takizawa
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
HeeSeok Choi ◽  
JongBeom Lim ◽  
Heonchang Yu ◽  
EunYoung Lee

We consider a cloud data center, in which the service provider supplies virtual machines (VMs) on hosts or physical machines (PMs) to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation algorithm based on task classification (i.e., computation-intensive and data-intensive) and resource utilization (e.g., CPU and RAM). Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without violating a predefined service level agreement (SLA). Unlike the existing research on VM consolidation or scheduling that applies none or single threshold schemes, we focus on a double threshold (upper and lower) scheme, which is used for VM consolidation. More specifically, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental performance evaluations with real-world traces, we prove that our task classification based energy-aware consolidation algorithm (TCEA) achieves a significant energy reduction without incurring predefined SLA violations.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Thembelihle Dlamini ◽  
Ángel Fernández Gambín ◽  
Daniele Munaretto ◽  
Michele Rossi

The convergence of communication and computing has led to the emergence of multi-access edge computing (MEC), where computing resources (supported by virtual machines (VMs)) are distributed at the edge of the mobile network (MN), i.e., in base stations (BSs), with the aim of ensuring reliable and ultra-low latency services. Moreover, BSs equipped with energy harvesting (EH) systems can decrease the amount of energy drained from the power grid resulting into energetically self-sufficient MNs. The combination of these paradigms is considered here. Specifically, we propose an online optimization algorithm, called Energy Aware and Adaptive Management (ENAAM), based on foresighted control policies exploiting (short-term) traffic load and harvested energy forecasts, where BSs and VMs are dynamically switched on/off towards energy savings and Quality of Service (QoS) provisioning. Our numerical results reveal that ENAAM achieves energy savings with respect to the case where no energy management is applied, ranging from 57% to 69%. Moreover, the extension of ENAAM within a cluster of BSs provides a further gain ranging from 9% to 16% in energy savings with respect to the optimization performed in isolation for each BS.


Author(s):  
Bhupesh Kumar Dewangan ◽  
Amit Agarwal ◽  
Venkatadri M. ◽  
Ashutosh Pasricha

Cloud computing is a platform where services are provided through the internet either free of cost or rent basis. Many cloud service providers (CSP) offer cloud services on the rental basis. Due to increasing demand for cloud services, the existing infrastructure needs to be scale. However, the scaling comes at the cost of heavy energy consumption due to the inclusion of a number of data centers, and servers. The extraneous power consumption affects the operating costs, which in turn, affects its users. In addition, CO2 emissions affect the environment as well. Moreover, inadequate allocation of resources like servers, data centers, and virtual machines increases operational costs. This may ultimately lead to customer distraction from the cloud service. In all, an optimal usage of the resources is required. This paper proposes to calculate different multi-objective functions to find the optimal solution for resource utilization and their allocation through an improved Antlion (ALO) algorithm. The proposed method simulated in cloudsim environments, and compute energy consumption for different workloads quantity and it increases the performance of different multi-objectives functions to maximize the resource utilization. It compared with existing frameworks and experiment results shows that the proposed framework performs utmost.


2021 ◽  
Author(s):  
Salam Ismaeel

<div>Increasing power efficiency is one of the most important operational factors for any data centre providers. In this context, one of the most useful approaches is to reduce the number of utilized Physical Machines (PMs) through optimal distribution and re-allocation of Virtual Machines (VMs) without affecting the Quality of Service (QoS). Dynamic VMs provisioning makes use of monitoring tools, historical data, prediction techniques, as well as placement algorithms to improve VMs allocation and migration. Consequently, the efficiency of the data centre energy consumption increases.</div><div>In this thesis, we propose an efficient real-time dynamic provisioning framework to reduce energy in heterogeneous data centres. This framework consists of an efficient workload preprocessing, systematic VMs clustering, a multivariate prediction, and an optimal Virtual Machine Placement (VMP) algorithm. Additionally, it takes into consideration VM and user behaviours along with the existing state of PMs. The proposed framework consists of a pipeline successive subsystems. These subsystems could be used separately or combined to improve accuracy, efficiency, and speed of workload clustering, prediction and provisioning purposes.<br></div><div>The pre-processing and clustering subsystems uses current state and historical workload data to create efficient VMs clusters. Efficient VMs clustering include less consumption resources, faster computing and improved accuracy. A modified multivariate Extreme Learning Machine (ELM)-based predictor is used to forecast the number of VMs in each cluster for the subsequent period. The prediction subsystem takes users’ behaviour into consideration to exclude unpredictable VMs requests.<br></div><div>The placement subsystem is a multi-objective placement algorithm based on a novel Machine Condition Index (MCI). MCI represents a group of weighted components that is inclusive of data centre network, PMs, storage, power system and facilities used in any data centre. In this study it will be used to measure the extent to which PM is deemed suitable for handling the new and/or consolidated VM in large scale heterogeneous data centres. It is an efficient tool for comparing server energy consumption used to augment the efficiency and manageability of data centre resources.</div><div> The proposed framework components separately are tested and evaluated with both synthetic and realistic data traces. Simulation results show that proposed subsystems can achieve efficient results as compared to existing algorithms. <br></div>


2021 ◽  
Vol 17 (3) ◽  
pp. 197-218
Author(s):  
Karima Saidi ◽  
Ouassila Hioual ◽  
Abderrahim Siam

In this paper, we address the issue of resource allocation in a Cloud Computing environment. Since the need for cloud resources has led to the rapid growth of data centers and the waste of idle resources, high-power consumption has emerged. Therefore, we develop an approach that reduces energy consumption. Decision-making for adequate tasks and virtual machines (VMs) with their consolidation minimizes this latter. The aim of the proposed approach is energy efficiency. It consists of two processes; the first one allows the mapping of user tasks to VMs. Whereas, the second process consists of mapping virtual machines to the best location (physical machines). This paper focuses on this latter to develop a model by using a deep neural network and the ELECTRE methods supported by the K-nearest neighbor classifier. The experiments show that our model can produce promising results compared to other works of literature. This model also presents good scalability to improve the learning, allowing, thus, to achieve our objectives.


Author(s):  
Dilawaer Duolikun ◽  
Ryo Watanabe ◽  
Hiroki Kataoka ◽  
Shigenari Nakamura ◽  
Tomoya Enokido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document