Primary Water Quality Challenges for South Africa and the Upper Vaal WMA

Author(s):  
Anja du Plessis
1995 ◽  
Vol 32 (2) ◽  
pp. 281-288
Author(s):  
Susan Taljaard ◽  
Willem A. M. Botes

In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all “beneficial uses”. Beneficial uses provides a basis for the derivation of water quality guidelines, which, for South Africa, are defined in Water quality guidelines for the South African coastal zone (DWAF, 1991). The CSIR has developed a practical approach to marine water quality management, taking into account international trends and local experience, which can be applied to any coastal development with potential influence on water quality. The management plan is divided into three logical components, i.e. • site-specific statutory requirements and environmental objectives; • system design with specific reference to influences on water quality; and • monitoring programmes. Within this management approach water quality issues are addressed in a holistic manner, through focused procedures and clear identification of information requirements. This paper describes the procedures and information requirements within each component of the water quality management plan, with specific reference to marine disposal systems. Ideally, the management plan should be implemented from the feasibility and conceptual design phase of a development and the timing of the different procedures within the development process are therefore also highlighted. However, the logical lay-out of procedures allows for easy initiation (even to existing disposal system) at any stage of development.


1998 ◽  
Vol 38 (11) ◽  
pp. 141-148 ◽  
Author(s):  
P. Marjanovic ◽  
M. Miloradov

The new National water policy will change the way water quality is managed in South Africa. The paper considers the water policy and the repercussions it will have for water quality monitoring in South Africa. Using the systems approach the paper discusses an integrated water quality monitoring system for ambient water quality and point and non point sources of aquatic pollution. The proposed methodology makes possible continuos assessment of water quality in an efficient manner so as to support water quality management in South Africa.


Water ◽  
2014 ◽  
Vol 6 (10) ◽  
pp. 2946-2968 ◽  
Author(s):  
Anja du Plessis ◽  
Tertius Harmse ◽  
Fethi Ahmed

2017 ◽  
Vol 9 ◽  
pp. 87-102 ◽  
Author(s):  
TA Probyn ◽  
M Pretorius ◽  
K Seanego ◽  
A Bernatzeder

Water SA ◽  
2016 ◽  
Vol 42 (2) ◽  
pp. 183
Author(s):  
Tatenda Dalu ◽  
Taurai Bere ◽  
P William Froneman

2018 ◽  
Vol 7 (3) ◽  
pp. 14 ◽  
Author(s):  
Joseph Kapuku Bwapwa

Water shortage in South Africa is a mixture of many factors: limited and highly polluted watercourses, low rainfall, fast growing population and high evaporation rates. Many studies on watercourses have shown a decline on quality due to the ongoing pollution caused by urbanization, mining, industry, power generation, afforestation and agriculture. Given the current forecasts based on population growth versus the country’s limited water resources, it is unlikely to keep existing patterns regarding the use of water and the discharge of wastes. Predictions are also indicating that pollutants will continue to accumulate in freshwater resources independently of the population growth in South Africa. Issues associated with water quality can turn out to be worsened with environmental devastating consequences. For instance, in the agricultural sector it may lead to a drop in yields and quality for fruits and crops followed by soil contamination. It can harmfully affect the population and aquatic health. Furthermore, water quality deterioration can affect the costs related to purification processes resulting in an increased price of clean water. Human induced activities causing salinization, eutrophication, acidification, presence of pathogens in watercourses, inappropriate waste discharge practices and sewage spills are major causes influencing or deteriorating water quality in South Africa. 


2018 ◽  
Vol 6 (2) ◽  
pp. 12
Author(s):  
Dipitseng Manamela ◽  
Omotayo Awofolu

This article investigates the impact of anthropogenic activities on an important surface water from physico-chemical, chemical and microbial perspectives. The surface water, referred to as Blesbokspruit is in the West Rand District of South Africa. Potential impactors include wastewater treatment plant, mines, farmlands and informal settlements. Water samples were collected from nine purposively selected sampling points and analysed in 2014. The mean values of analysed variables across sampling sites and periods ranged from pH: 7.4-8.4; EC: 93.0 - 146.6 mS/m; TSS: 11.3 – 39.0 mg/L; TDS: 590.3 - 1020.3 mg/L; COD: 15.6- 34.8 mg/L. Those for anions varied from NO3-: 0.2- 2.1 (mg/L) N; PO43- : 0.4-0.9 mg/L and SO42-: 118.6 - 379.5 mg/L. The metallic variables ranged from As: 0.01-0.06 mg/L; Cd: 0.02-0.06 mg/L; Fe: 0.04-0.73 mg/L; Cu: 0.02 – 0.05 mg/L and Zn: 0.05 – 0.15 mg/L. The Faecal coliform varied from 15.9-16878.5 cfu/100 ml; Total coliform: 92.9-430294 cfu/100 ml and HPC from 4322.5-39776 cfu/1ml. Detection of toxic metals and pathogenic organisms above target safety limits indicate unsuitability of the water for domestic use with impact on the health of aquatic ecosystem. The study generally revealed the impact of anthropogenic activities on the surface water quality.


Sign in / Sign up

Export Citation Format

Share Document