Experimental Study of Measurement Errors in 3D-DIC Due to Out-of-Plane Specimen Rotation

Author(s):  
Farzana Yasmeen ◽  
Sreehari Rajan ◽  
Michael A Sutton ◽  
Hubert W. Schreier
Mechanik ◽  
2020 ◽  
Vol 93 (7) ◽  
pp. 13-15
Author(s):  
Maciej Szudarek ◽  
Mateusz Turkowski

Oscillatory flowmeters are susceptible to pulsatile flow and mechanical oscillator flowmeters are no exception. The experimental study was conducted to determine possible measurement errors for specific pulsation amplitude thresholds. The study verified that no frequency lock-in takes place for pulsation frequencies which are subharmonics of the natural oscillation frequency, nor for harmonics higher than the 2nd.


2017 ◽  
Vol 12 (1) ◽  
pp. 123-133
Author(s):  
Cristian Petruş ◽  
Valeriu Stoian ◽  
Marius Moşoarcă ◽  
Anthimos Anastasiadis

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2174-2188
Author(s):  
F. Ahmadpour ◽  
M. Zeinoddini ◽  
M. Mo'tamedi ◽  
R. Rashnooie

Author(s):  
Vinodkumar Jacob ◽  
M. Bhasi ◽  
R. Gopikakumari

Measurement is the act or the result, of a quantitative comparison between a given quantity and a quantity of the same kind chosen as a unit. It is for observing and testing scientific and technological investigations and generally agreed that all measurements contain errors. In a measuring system where both a measuring instrument and a human being taking the measurement using a preset process, the measurement error could be due to the instrument, the process or human error. This study is devoted to understanding the human errors in measurement. Work and human involvement related factors that could affect measurement errors have been identified. An experimental study has been conducted using different subjects where the factors were changed one at a time and the measurements made by them recorded. Errors in measurement were then calculated and the data so obtained was subject to statistical analysis to draw conclusions regarding the influence of different factors on human errors in measurement. The findings are presented in the paper.


2014 ◽  
Author(s):  
S. Romano ◽  
E. De Tommasi ◽  
A. C. De Luca ◽  
I. Rendina ◽  
S. Cabrini ◽  
...  

2021 ◽  
Vol 48 (1) ◽  
pp. 89-97
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Luis Fernandez-Baqueiro ◽  
Juan Cacep-Rodriguez ◽  
Cesar Freyre-Pinto

An experimental study on the out-of-plane behavior of confined masonry walls is presented. Four confined walls with aspect ratios greater than one were tested in the laboratory. Walls were subjected to combined axial and out-of-plane uniform loads. The variables studied were the aspect ratio and the axial compressive stress of walls. It was observed that the out-of-plane strength of walls increased as the aspect ratio or the axial compressive stress increased. Failure of walls was associated with crushing of masonry. Analytical out-of-plane strength of walls was determined using the yielding line, failure line, modified yielding line, compressive strut and bidirectional strut methods. It was concluded that the experimental out-of-plane strength of walls was best predicted with the bidirectional strut method.


Sign in / Sign up

Export Citation Format

Share Document