Human Impacts on Ancient Marine Ecosystems

Author(s):  
Torben C. Rick ◽  
Jon M. Erlandson
2020 ◽  
pp. 5334-5336
Author(s):  
Torben C. Rick ◽  
Jon M. Erlandson

2018 ◽  
Author(s):  
SeaPlan

Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Massachusetts.For this study, regional ecosystem experts were surveyed to gauge the relative vulnerability of marine ecosystems to current and emerging anthropogenic stressors. Survey results were then combined with spatial information on the distribution of marine ecosystems and human stressors to map cumulative impacts in Massachusetts waters.The study resulted in an ecosystem vulnerability matrix and human impacts maps, which together yield insights into which ecosystems and places are most vulnerable and which human uses, alone and in combination, are putting the most stress on marine ecosystems. These products can be used in a number of ways, including to help clarify ocean planning decisions, identify areas of potential conflict among ocean users and areas that may merit conservation, and assess ecological, economic and social values of particular places.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135473 ◽  
Author(s):  
Florian Holon ◽  
Nicolas Mouquet ◽  
Pierre Boissery ◽  
Marc Bouchoucha ◽  
Gwenaelle Delaruelle ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3136
Author(s):  
Leigh W. Tait ◽  
Shane Orchard ◽  
David R. Schiel

Coastal marine ecosystems are under stress, yet actionable information about the cumulative effects of human impacts has eluded ecologists. Habitat-forming seaweeds in temperate regions provide myriad irreplaceable ecosystem services, but they are increasingly at risk of local and regional extinction from extreme climatic events and the cumulative impacts of land-use change and extractive activities. Informing appropriate management strategies to reduce the impacts of stressors requires comprehensive knowledge of species diversity, abundance and distributions. Remote sensing undoubtedly provides answers, but collecting imagery at appropriate resolution and spatial extent, and then accurately and precisely validating these datasets is not straightforward. Comprehensive and long-running monitoring of rocky reefs exist globally but are often limited to a small subset of reef platforms readily accessible to in-situ studies. Key vulnerable habitat-forming seaweeds are often not well-assessed by traditional in-situ methods, nor are they well-captured by passive remote sensing by satellites. Here we describe the utility of drone-based methods for monitoring and detecting key rocky intertidal habitat types, the limitations and caveats of these methods, and suggest a standardised workflow for achieving consistent results that will fulfil the needs of managers for conservation efforts.


2020 ◽  
Vol 287 (1941) ◽  
pp. 20201798
Author(s):  
K. M. Fraser ◽  
J. S. Lefcheck ◽  
S. D. Ling ◽  
C. Mellin ◽  
R. D. Stuart-Smith ◽  
...  

Primary productivity of marine ecosystems is largely driven by broad gradients in environmental and ecological properties. By contrast, secondary productivity tends to be more variable, influenced by bottom-up (resource-driven) and top-down (predatory) processes, other environmental drivers, and mediation by the physical structure of habitats. Here, we use a continental-scale dataset on small mobile invertebrates (epifauna), common on surfaces in all marine ecosystems, to test influences of potential drivers of temperature-standardized secondary production across a large biogeographic range. We found epifaunal production to be remarkably consistent along a temperate to tropical Australian latitudinal gradient of 28.6°, spanning kelp forests to coral reefs (approx. 3500 km). Using a model selection procedure, epifaunal production was primarily related to biogenic habitat group, which explained up to 45% of total variability. Production was otherwise invariant to predictors capturing primary productivity, the local biomass of fishes (proxy for predation pressure), and environmental, geographical, and human impacts. Highly predictable levels of epifaunal productivity associated with distinct habitat groups across continental scales should allow accurate modelling of the contributions of these ubiquitous invertebrates to coastal food webs, thus improving understanding of likely changes to food web structure with ocean warming and other anthropogenic impacts on marine ecosystems.


2014 ◽  
pp. 3536-3538 ◽  
Author(s):  
Torben C. Rick ◽  
Jon M. Erlandson

2016 ◽  
Vol 13 (21) ◽  
pp. 5965-5981 ◽  
Author(s):  
Jelena Vidović ◽  
Rafał Nawrot ◽  
Ivo Gallmetzer ◽  
Alexandra Haselmair ◽  
Adam Tomašových ◽  
...  

Abstract. Shallow and sheltered marine embayments in urbanized areas are prone to the accumulation of pollutants, but little is known about the historical baselines of such marine ecosystems. Here we study foraminiferal assemblages, geochemical proxies and sedimentological data from 1.6 m long sediment cores to uncover  ∼  500 years of anthropogenic pressure from mining, port and industrial activities in the Gulf of Trieste, Italy. From 1600 to 1900 AD, normalized element concentrations and foraminiferal assemblages point to negligible effects of agricultural activities. The only significant anthropogenic activity during this period was mercury mining in the hinterlands of the gulf, releasing high amounts of mercury into the bay and significantly exceeding the standards on the effects of trace elements on benthic organisms. Nonetheless, the fluctuations in the concentrations of mercury do not correlate with changes in the composition and diversity of foraminiferal assemblages due to its non-bioavailability. Intensified agricultural and maricultural activities in the first half of the 20th century caused slight nutrient enrichment and a minor increase in foraminiferal diversity. Intensified port and industrial activities in the second half of 20th century increased the normalized trace element concentrations and persistent organic pollutants (PAH, PCB) in the topmost part of the core. This increase caused only minor changes in the foraminiferal community because foraminifera in Panzano Bay have a long history of adaptation to elevated trace element concentrations. Our study underlines the importance of using an integrated, multidisciplinary approach in reconstructing the history of environmental and anthropogenic changes in marine systems. Given the prolonged human impacts in coastal areas like the Gulf of Trieste, such long-term baseline data are crucial for interpreting the present state of marine ecosystems.


2015 ◽  
Vol 43 (1) ◽  
pp. 90-95 ◽  
Author(s):  
MATTHEW A. L. YOUNG ◽  
SIMON FOALE ◽  
DAVID R. BELLWOOD

SUMMARYIsolation can provide marine ecosystems with a refuge from human impacts. However, information on the biodiversity, ecology and fisheries of remote regions is often sparse. The proposed Coral Sea Marine Reserve could create one of the world's largest and most remote marine parks, yet little information is available to inform discussions. Fish captures from the Coral Sea and adjacent Great Barrier Reef (GBR) were assessed from reports contained in a chronology of spearfishing publications from 1953 to 2009, and reveal for the first time the history of recreational spearfishing in the Coral Sea. Although the area is perceived as relatively untouched, the data indicate that spearfishers have frequented Coral Sea reefs for at least 43 years and reported captures have increased exponentially. Post-1993 trophy captures in the Coral Sea (mean 23 kg) were larger than the adjacent GBR (9 kg). Reef species characterize the GBR catch, while large pelagic species characterize the Coral Sea catch. Provided that functionally important fishes are not targeted, the relatively small scale of recreational spearfishing and the focus on pelagic species suggests that spearfishing currently exerts limited pressure on the ecology of Coral Sea reefs.


Sign in / Sign up

Export Citation Format

Share Document