scholarly journals Distributed Machine Learning on Smart-Gateway Network Towards Real-Time Indoor Data Analytics

Author(s):  
Hantao Huang ◽  
Rai Suleman Khalid ◽  
Hao Yu
2021 ◽  
Author(s):  
Rodrigo Chamusca Machado ◽  
Fabbio Leite ◽  
Cristiano Xavier ◽  
Alberto Albuquerque ◽  
Samuel Lima ◽  
...  

Objectives/Scope This paper presents how a brazilian Drilling Contractor and a startup built a partnership to optimize the maintenance window of subsea blowout preventers (BOPs) using condition-based maintenance (CBM). It showcases examples of insights about the operational conditions of its components, which were obtained by applying machine learning techniques in real time and historic, structured or unstructured, data. Methods, Procedures, Process From unstructured and structured historical data, which are generated daily from BOP operations, a knowledge bank was built and used to develop normal functioning models. This has been possible even without real-time data, as it has been tested with large sets of operational data collected from event log text files. Software retrieves the data from Event Loggers and creates structured database, comprising analog variables, warnings, alarms and system information. Using machine learning algorithms, the historical data is then used to develop normal behavior modeling for the target components. Thereby, it is possible to use the event logger or real time data to identify abnormal operation moments and detect failure patterns. Critical situations are immediately transmitted to the RTOC (Real-time Operations Center) and management team, while less critical alerts are recorded in the system for further investigation. Results, Observations, Conclusions During the implementation period, Drilling Contractor was able to identify a BOP failure using the detection algorithms and used 100% of the information generated by the system and reports to efficiently plan for equipment maintenance. The system has also been intensively used for incident investigation, helping to identify root causes through data analytics and retro-feeding the machine learning algorithms for future automated failure predictions. This development is expected to significantly reduce the risk of BOP retrieval during the operation for corrective maintenance, increased staff efficiency in maintenance activities, reducing the risk of downtime and improving the scope of maintenance during operational windows, and finally reduction in the cost of spare parts replacementduring maintenance without impact on operational safety. Novel/Additive Information For the near future, the plan is to integrate the system with the Computerized Maintenance Management System (CMMS), checking for historical maintenance, overdue maintenance, certifications, at the same place and time that we are getting real-time operational data and insights. Using real-time data as input, we expect to expand the failure prediction application for other BOP parts (such as regulators, shuttle valves, SPMs (Submounted Plate valves), etc) and increase the applicability for other critical equipment on the rig.


2021 ◽  
Vol 3 ◽  
Author(s):  
Haizhou Du ◽  
Shiwei Wang ◽  
Huan Huo

In recent years, the emergence of distributed machine learning has enabled deep learning models to ensure data security and privacy while training efficiently. Anomaly detection for network traffic in distributed machine learning scenarios is of great significance for network security. Although deep neural networks have made remarkable achievements in anomaly detection for network traffic, they mainly focus on closed sets, that is, assuming that all anomalies are known. However, in a real network environment, unknown abnormalities are fatal risks faced by the system because they have no labels and occur before the known anomalies. In this study, we design and implement XFinder, a dynamic unknown traffic anomaly detection framework in distributed machine learning. XFinder adopts an online mode to detect unknown anomalies in real-time. XFinder detects unknown anomalies by the unknowns detector, transfers the unknown anomalies to the prior knowledge base by the network updater, and adopts the online mode to report new anomalies in real-time. The experimental results show that the average accuracy of the unknown anomaly detection of our model is increased by 27% and the average F1-Score is improved by 20%. Compared with the offline mode, XFinder’s detection time is reduced by an average of approximately 33% on three datasets, and can better meet the network requirement.


Sign in / Sign up

Export Citation Format

Share Document