Distributed-neuron-network based Machine Learning on Smart-gateway Network Towards Real-time Indoor Data Analytics

Author(s):  
Hantao Huang ◽  
Yuehua Cai ◽  
Hao Yu
2021 ◽  
Author(s):  
Rodrigo Chamusca Machado ◽  
Fabbio Leite ◽  
Cristiano Xavier ◽  
Alberto Albuquerque ◽  
Samuel Lima ◽  
...  

Objectives/Scope This paper presents how a brazilian Drilling Contractor and a startup built a partnership to optimize the maintenance window of subsea blowout preventers (BOPs) using condition-based maintenance (CBM). It showcases examples of insights about the operational conditions of its components, which were obtained by applying machine learning techniques in real time and historic, structured or unstructured, data. Methods, Procedures, Process From unstructured and structured historical data, which are generated daily from BOP operations, a knowledge bank was built and used to develop normal functioning models. This has been possible even without real-time data, as it has been tested with large sets of operational data collected from event log text files. Software retrieves the data from Event Loggers and creates structured database, comprising analog variables, warnings, alarms and system information. Using machine learning algorithms, the historical data is then used to develop normal behavior modeling for the target components. Thereby, it is possible to use the event logger or real time data to identify abnormal operation moments and detect failure patterns. Critical situations are immediately transmitted to the RTOC (Real-time Operations Center) and management team, while less critical alerts are recorded in the system for further investigation. Results, Observations, Conclusions During the implementation period, Drilling Contractor was able to identify a BOP failure using the detection algorithms and used 100% of the information generated by the system and reports to efficiently plan for equipment maintenance. The system has also been intensively used for incident investigation, helping to identify root causes through data analytics and retro-feeding the machine learning algorithms for future automated failure predictions. This development is expected to significantly reduce the risk of BOP retrieval during the operation for corrective maintenance, increased staff efficiency in maintenance activities, reducing the risk of downtime and improving the scope of maintenance during operational windows, and finally reduction in the cost of spare parts replacementduring maintenance without impact on operational safety. Novel/Additive Information For the near future, the plan is to integrate the system with the Computerized Maintenance Management System (CMMS), checking for historical maintenance, overdue maintenance, certifications, at the same place and time that we are getting real-time operational data and insights. Using real-time data as input, we expect to expand the failure prediction application for other BOP parts (such as regulators, shuttle valves, SPMs (Submounted Plate valves), etc) and increase the applicability for other critical equipment on the rig.


2021 ◽  
Vol 73 (03) ◽  
pp. 34-37
Author(s):  
Judy Feder

The time needed to eliminate complications and accidents accounts for 20–25% of total well construction time, according to a 2020 SPE paper (SPE 200740). The same paper notes that digital twins have proven to be a key enabler in improving sustainability during well construction, shrinking the carbon footprint by reducing overall drilling time and encouraging and bringing confidence to contactless advisory and collaboration. The paper also points out the potential application of digital twins to activities such as geothermal drilling. Advanced data analytics and machine learning (ML) potentially can reduce engineering hours up to 70% during field development, according to Boston Consulting Group. Increased field automation, remote operations, sensor costs, digital twins, machine learning, and improved computational speed are responsible. It is no surprise, then, that digital twins are taking on a greater sense of urgency for operators, service companies, and drilling contractors working to improve asset and enterprise safety, productivity, and performance management. For 2021, digital twins appear among the oil and gas industry’s top 10 digital spending priorities. DNV GL said in its Technology Outlook 2030 that this could be the decade when cloud computing and advanced simulation see virtual system testing, virtual/augmented reality, and machine learning progressively merge into full digital twins that combine data analytics, real-time, and near-real-time data for installations, subsurface geology, and reservoirs to bring about significant advancements in upstream asset performance, safety, and profitability. The biggest challenges to these advancements, according to the firm, will be establishing confidence in the data and computational models that a digital twin uses and user organizations’ readiness to work with and evolve alongside the digital twin. JPT looked at publications from inside and outside the upstream industry and at several recent SPE papers to get a snapshot of where the industry stands regarding uptake of digital twins in well construction and how the technology is affecting operations and outcomes. Why Digital Twins Gartner Information defines a digital twin as a digital representation of a real-world entity or system. “The implementation of a digital twin,” Gartner writes, “is an encapsulated software object or model that mirrors a unique physical object, process, organization, person or other abstraction.” Data from multiple digital twins can be aggregated for a composite view across several real-world entities and their related processes. In upstream oil and gas, digital twins focus on the well—and, ultimately, the field—and its lifecycle. Unlike a digital simulation, which produces scenarios based on what could happen in the physical world but whose scenarios may not be actionable, a digital twin represents actual events from the physical world, making it possible to visualize and understand real-life scenarios to make better decisions. Digital well construction twins can pertain to single assets or processes and to the reservoir/subsurface or the surface. Ultimately, when process and asset sub-twins are connected, the result is an integrated digital twin of the entire asset or well. Massive sensor technology and the ability to store and handle huge amounts of data from the asset will enable the full digital twin to age throughout the life-cycle of the asset, along with the asset itself (Fig. 1).


2020 ◽  
Author(s):  
Ravindra Kumar Singh ◽  
Harsh Kumar Verma

Abstract The extensive usage of social media polarity analysis claims the need for real-time analytics and runtime outcomes on dashboards. In data analytics, only 30% of the time is consumed in modeling and evaluation stages and 70% is consumed in data engineering tasks. There are lots of machine learning algorithms to achieve a desirable outcome in prediction points of view, but they lack in handling data and their transformation so-called data engineering tasks, and reducing its time remained still challenging. The contribution of this research paper is to encounter the mentioned challenges by presenting a parallelly, scalable, effective, responsive and fault-tolerant framework to perform end-to-end data analytics tasks in real-time and batch-processing manner. An experimental analysis on Twitter posts supported the claims and signifies the benefits of parallelism of data processing units. This research has highlighted the importance of processing mentioned URLs and embedded images along with post content to boost the prediction efficiency. Furthermore, this research additionally provided a comparison of naive Bayes, support vector machines, extreme gradient boosting and long short-term memory (LSTM) machine learning techniques for sentiment analysis on Twitter posts and concluded LSTM as the most effective technique in this regard.


Sign in / Sign up

Export Citation Format

Share Document