Patients’ EEG Data Analysis via Spectrogram Image with a Convolution Neural Network

Author(s):  
Longhao Yuan ◽  
Jianting Cao
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Cheng Zhang ◽  
Xingjun Liu

In recent years, deep learning has made good progress and has been applied to face recognition, video monitoring, image processing, and other fields. In this big data background, deep convolution neural network has also received more and more attention. In order to extract the ancient Chinese characters effectively, the paper will discuss the structure model, pool process, and network training of deep convolution neural network and compare the algorithm with the traditional machine learning algorithm. The results show that the accuracy and recall rate of the Chinese characters in the plaque of Ming Dynasty can reach the peak, 81.38% and 81.31%, respectively. When the number of training samples increases to 50, the recognition rate of MFA is 99.72%, which is much higher than other algorithms. This shows that the algorithm based on deep convolution neural network and big data analysis has excellent performance and can effectively identify the Chinese characters under different dynasties, different sample sizes, and different interference factors, which can provide a powerful reference for the extraction of ancient Chinese characters.


Author(s):  
Santhi Baskaran ◽  
Jahnavi Korrapati ◽  
Sooriya K. ◽  
Pavithra R.

2019 ◽  
Vol 2019 (1) ◽  
pp. 679-1-679-6 ◽  
Author(s):  
Muhammad Bilal ◽  
Mohib Ullah ◽  
Habib Ullah
Keyword(s):  

2004 ◽  
Vol 95 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Hongyuan Sun ◽  
Qiye Wen ◽  
Peixin Zhang ◽  
Jianhong Liu ◽  
Qianling Zhang ◽  
...  

2019 ◽  
Author(s):  
CHIEN WEI ◽  
Chi Chow Julie ◽  
Chou Willy

UNSTRUCTURED Backgrounds: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN), a well-established deep learning method, can improve prediction accuracy on account of its usage of a large number of parameters for modeling. Whether the HT person fit statistic can be combined with CNN to increase the prediction accuracy of the model and develop an application (APP) to detect DF in children remains unknown. Objectives: The aim of this study is to build a model for the automatic detection and classification of DF with symptoms to help patients, family members, and clinicians identify the disease at an early stage. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF) using CNN to predict DF risk. The accuracy of two sets of characteristics (19 symptoms and four other variables, including person mean, standard deviation, and two HT-related statistics matched to DF+ and DF−) for predicting DF, were then compared. Data were separated into training and testing sets, and the former was used to predict the latter. We calculated the sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) across studies for comparison. Results: We observed that (1) the 23-item model yields a higher accuracy rate (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90) based on the 177-case training set; (2) the Sens values are almost higher than the corresponding Spec values (90% in 10 scenarios) for predicting DF; (3) the Sens and Spec values of the 23-item model are consistently higher than those of the 19-item model. An APP was subsequently designed to detect DF in children. Conclusion: The 23-item model yielded higher accuracy rates (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90). An APP could be developed to help patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


Sign in / Sign up

Export Citation Format

Share Document