scholarly journals Feature Extraction of Ancient Chinese Characters Based on Deep Convolution Neural Network and Big Data Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Cheng Zhang ◽  
Xingjun Liu

In recent years, deep learning has made good progress and has been applied to face recognition, video monitoring, image processing, and other fields. In this big data background, deep convolution neural network has also received more and more attention. In order to extract the ancient Chinese characters effectively, the paper will discuss the structure model, pool process, and network training of deep convolution neural network and compare the algorithm with the traditional machine learning algorithm. The results show that the accuracy and recall rate of the Chinese characters in the plaque of Ming Dynasty can reach the peak, 81.38% and 81.31%, respectively. When the number of training samples increases to 50, the recognition rate of MFA is 99.72%, which is much higher than other algorithms. This shows that the algorithm based on deep convolution neural network and big data analysis has excellent performance and can effectively identify the Chinese characters under different dynasties, different sample sizes, and different interference factors, which can provide a powerful reference for the extraction of ancient Chinese characters.

Author(s):  
Antonios Konstantaras ◽  
Nikolaos S. Petrakis ◽  
Theofanis Frantzeskakis ◽  
Emmanouil Markoulakis ◽  
Katerina Kabassi ◽  
...  

2019 ◽  
Vol 11 (13) ◽  
pp. 3499 ◽  
Author(s):  
Se-Hoon Jung ◽  
Jun-Ho Huh

This study sought to propose a big data analysis and prediction model for transmission line tower outliers to assess when something is wrong with transmission line tower big data based on deep reinforcement learning. The model enables choosing automatic cluster K values based on non-labeled sensor big data. It also allows measuring the distance of action between data inside a cluster with the Q-value representing network output in the altered transmission line tower big data clustering algorithm containing transmission line tower outliers and old Deep Q Network. Specifically, this study performed principal component analysis to categorize transmission line tower data and proposed an automatic initial central point approach through standard normal distribution. It also proposed the A-Deep Q-Learning algorithm altered from the deep Q-Learning algorithm to explore policies based on the experiences of clustered data learning. It can be used to perform transmission line tower outlier data learning based on the distance of data within a cluster. The performance evaluation results show that the proposed model recorded an approximately 2.29%~4.19% higher prediction rate and around 0.8% ~ 4.3% higher accuracy rate compared to the old transmission line tower big data analysis model.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 105659-105670 ◽  
Author(s):  
Rehan Ashraf ◽  
Muhammad Asif Habib ◽  
Muhammad Akram ◽  
Muhammad Ahsan Latif ◽  
Muhammad Sheraz Arshad Malik ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tianchi Lu

B-cells that induce antigen-specific immune responses in vivo produce large numbers of antigen-specific antibodies by recognizing subregions (epitopes) of antigenic proteins, in which they can inhibit the function of antigen protein. Epitope region prediction facilitates the design and development of vaccines that induce the production of antigen-specific antibodies. There are many diseases which are difficult to treat without vaccines. And the COVID-19 has destroyed many people’s lives. Therefore, making vaccines to COVID-19 is very important. Making vaccines needs a large number of experiments to get labeled targets. However, obtaining tremendous labeled data from experiments is a challenge for humans. Big data analysis has proposed some solutions to deal with this challenge. Big data technology has developed very fast and has been applied in many areas. In the bioinformatics area, big data analysis solves a large number of problems, particularly in the area of active learning. Active learning is a method of building more predictive models with less labeled data. Active learning establishes models with less data by asking the oracle (human) for the most valuable samples to train models. Hence, active learning’s application in making vaccines is meaningful that the scientists do not need to do tremendous experiments. This paper proposed a more robust active learning method based on uncertainty sampling and K-nearest density and applies it to the vaccine manufacture. This paper evaluates the new algorithm with accuracy and robustness. In order to evaluate the robustness of active learners, a new robustness index is designed in this paper. And this paper compares the new algorithm with a pool-based active learning algorithm, density-weighted active learning algorithm, and traditional machine learning algorithm. Finally, the new algorithm is applied to epitope prediction of B-cell data, which is significant to making vaccines.


Author(s):  
Antonios Konstantaras ◽  
Nikolaos S. Petrakis ◽  
Theofanis Frantzeskakis ◽  
Emmanouil Markoulakis ◽  
Katerina Kabassi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lidong Wang ◽  
Kai Qiu ◽  
Wang Li

In recent years, the application of the gradient boosting-back propagation (GB-BP) neural network algorithm in many industries has brought huge benefits, so how to combine the GB-BP neural network algorithm with sports has become a research hotspot. Based on this, this paper studies the application of the GB-BP neural network algorithm in wrestling, designs the sports athletes action recognition and classification model based on the GB-BP neural network algorithm, first analyzes the research status of wrestling action recognition, and then optimizes and improves the shortcomings of action recognition and big data analysis technology. The GB-BP neural network algorithm can realize the accurate recognition and classification of wrestlers’ training actions and carry out big data mining analysis with known action recognition, so as to achieve accurate classification. The experimental results show that the model can play a good role in wrestling and effectively improve the efficiency of wrestlers in training.


Sign in / Sign up

Export Citation Format

Share Document