Chlorella Algae Image Analysis Using Artificial Neural Network and Deep Learning

Author(s):  
S. Lakshmi ◽  
R. Sivakumar
Author(s):  
Thomas P. Trappenberg

This chapter discusses the basic operation of an artificial neural network which is the major paradigm of deep learning. The name derives from an analogy to a biological brain. The discussion begins by outlining the basic operations of neurons in the brain and how these operations are abstracted by simple neuron models. It then builds networks of artificial neurons that constitute much of the recent success of AI. The focus of this chapter is on using such techniques, with subsequent consideration of their theoretical embedding.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shifei Ding ◽  
Nan Zhang ◽  
Xinzheng Xu ◽  
Lili Guo ◽  
Jian Zhang

Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM) put forward deep extreme learning machine (DELM) and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI) competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.


Author(s):  
Dmitry TARASOV ◽  
Oleg Milder ◽  
Andrei Tiagunov

Nickel alloys are widely used in the production of gas turbine parts. The alloys show resistance to mechanical and chemical degradation under severe long-term stress and high temperatures. One of the major mechanical properties of the alloys is the high-temperature rupture strength, which is measured after a specimen is heated to a certain temperature and held for a certain time considering deformation. Determining the influence of certain elements on the properties of an alloy is a complex scientific and engineering problem that affects the time and cost of developing new materials. Simulation is a great chance to cut costs. In this paper, we predict a high-temperature strength based on the composition of refractory elements in alloys using a deep learning artificial neural network. We build the model based on prior knowledge of the composition of the alloys, information on the role of alloying elements, type of crystallization, test temperature and time, and the tensile strength. Successful simulation results show the applicability of this method in practice.


Sign in / Sign up

Export Citation Format

Share Document