Performance of Shallow Foundation Overlaying Cavernous Limestone

Author(s):  
Ahmed M. El-Tohamy
Keyword(s):  
2021 ◽  
pp. 105990
Author(s):  
Chun-Yuan Liu ◽  
Chien-Hung Li ◽  
Pei-Chen Chan ◽  
Chien-Hui Hung ◽  
Ming-Lang Lin

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


Author(s):  
S. Imanzadeh ◽  
D. Breysse ◽  
J. Baroth ◽  
D. Dias ◽  
N. Piegay ◽  
...  

2012 ◽  
Vol 17 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Odgerel Enkhtur ◽  
Tien Dung Nguyen ◽  
Jin Man Kim ◽  
Sung Ryul Kim

2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
J. D. Nyuin ◽  
M. J. Md Noor ◽  
Y. Ashaari ◽  
C. Petrus ◽  
A. Albar

Conventional analysis and design of shallow foundation are based on the assumption that the soil is under fully saturated condition. However, shallow foundations are typically constructed near the ground surface where the soil is under partially saturated condition. Therefore, more research to investigate the behaviour of shallow foundation in unsaturated soil is very essential in order to aid engineers in making good analysis and design. This paper presents a series of laboratory footing tests conducted on unsaturated sandy soil. A specially designed test tank was fabricated for the test. Square footings of two different sizes (100 mm x 100 mm and 150 mm x150 mm) were used and loaded on Rawang sand which has residual suction value of 10 kPa. The measured values of matric suction of the soil in the test tank were in the range of 0 to 30 kPa. Based on the results, it was observed that bearing capacities of shallow foundation under fully saturated condition were the lowest compared to soil under unsaturated conditions. The highest values were measured at matric suction equals to residual suction (i.e 10 kPa). Furthermore, the relationship between the bearing capacities of shallow foundation with the matric suction was observed to be non-linear.    


2011 ◽  
Vol 90-93 ◽  
pp. 217-221
Author(s):  
Jin Long Zhou ◽  
Qiao Li ◽  
Wei Zhong Cai

Through the investigation into composition of major shallow foundation soil mass and the correlation of mechanical indicators in this study, the regression equation of mechanical indicators of the features of local foundation soil mass and the data of in situ testing was obtained. Based on massive quantities of exploration materials, this study analyzed engineering features, distribution status, and the feasibility of silty clay to be used as the bearing layer of the pile in Layer ④2 . The analytical results showed that the silty clay with the uniform depth of over 3.5m and the cone tip resistance in static sounding of over 400MPa could be used as bearing layer of the pile. This study could provide the reference for the accurate understanding of the engineering features of soil mass, and the design and evaluation of foundation in Jiaxing City.


Sign in / Sign up

Export Citation Format

Share Document