Immersive Ground Control Station for Unmanned Aerial Vehicles

Author(s):  
Glesio Garcia de Paiva ◽  
Diego Roberto Colombo Dias ◽  
Marcelo de Paiva Guimarães ◽  
Luis Carlos Trevelin
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


2013 ◽  
Vol 390 ◽  
pp. 388-392
Author(s):  
Ai Zhi Liu ◽  
Bao An Li ◽  
An Min Xi

In the view of the existing design for Ground Control Station(GCS) of Unmanned Aerial Vehicles(UAV) lacking of generality and ergonomics, a kind of ergonomic and general GCS is designed; the architecture of GCS system, which is general open and distributed, is constructed based on Gigabit Ethernet; a standard and general hardware platform is designed; software follows Standard Interface of STANAG 4586; the Shelter and Flight Control Console(FCC) are designed based on Ergonomics; that is an exploration for the design of GCS.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4085 ◽  
Author(s):  
Ben Schellenberg ◽  
Tom Richardson ◽  
Arthur Richards ◽  
Robert Clarke ◽  
Matt Watson

A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.


2014 ◽  
Vol 02 (02) ◽  
pp. 175-199 ◽  
Author(s):  
Guowei Cai ◽  
Jorge Dias ◽  
Lakmal Seneviratne

This paper provides a brief overview on the recent advances of small-scale unmanned aerial vehicles (UAVs) from the perspective of platforms, key elements, and scientific research. The survey starts with an introduction of the recent advances of small-scale UAV platforms, based on the information summarized from 132 models available worldwide. Next, the evolvement of the key elements, including onboard processing units, navigation sensors, mission-oriented sensors, communication modules, and ground control station, is presented and analyzed. Third, achievements of small-scale UAV research, particularly on platform design and construction, dynamics modeling, and flight control, are introduced. Finally, the future of small-scale UAVs' research, civil applications, and military applications are forecasted.


Author(s):  
R. El Meouche ◽  
I. Hijazi ◽  
P. A. Poncet ◽  
M. Abunemeh ◽  
M. Rezoug

The use of Unmanned Aerial Vehicles (UAVs) for surveying is now widespread and operational for several applications – quarry monitoring, archeological site surveys, forest management and 3D modeling for buildings, for instance. UAV is increasingly used by land surveyors especially for those kinds of projects. It is still ambiguous whether UAV can be applicable for smaller sites and property division. Therefore, the objective of this research is to extract a vectorized plan utilizing a UAV for a small site and investigate the possibility of an official land surveyor exploiting and certificating it. To do that, two plans were created, one using a UAV and another utilizing classical land surveyor instruments (Total Station). A comparison was conducted between the two plans to evaluate the accuracy of the UAV technique compared to the classical one. Moreover, other parameters were also considered such as execution time and the surface covered. The main problems associated with using a UAV are the level of precision and the visualization of the whole area. The results indicated that the precision is quite satisfactory with a maximum error of 1.0 cm on ground control points, and 4 cm for the rest of the model. On the other hand, the results showed that it is not possible to represent the whole area of interest utilizing a UAV, due to vegetation.


2017 ◽  
Author(s):  
Wojciech Walendziuk ◽  
Daniel Oldziej ◽  
Dawid Przemyslaw Binczyk ◽  
Maciej Slowik

Author(s):  
Serge A. Wich ◽  
Lian Pin Koh

In this chapter we discuss the typology of drones that are currently being used for different kinds of environmental and conservation applications. Drones are also commonly known variously as Remotely Piloted Aircraft Systems (RPAS), Unmanned Aerial Vehicles (UAV), and Unmanned Aircraft Systems (UAS). We focus on the most popular aircraft types including multirotor (of various configurations), fixed wing, and hybrid ‘vertical-take-off-and-landing’ (VTOL) craft, and briefly discuss the relative pros and cons of each type. We also broadly discuss the essential components common to all remotely piloted aircraft systems, including the power source, flight controller (or autopilot), and ground control station.


Sign in / Sign up

Export Citation Format

Share Document