Ergonomic and General Ground Control Station Design for Unmanned Aerial Vehicles

2013 ◽  
Vol 390 ◽  
pp. 388-392
Author(s):  
Ai Zhi Liu ◽  
Bao An Li ◽  
An Min Xi

In the view of the existing design for Ground Control Station(GCS) of Unmanned Aerial Vehicles(UAV) lacking of generality and ergonomics, a kind of ergonomic and general GCS is designed; the architecture of GCS system, which is general open and distributed, is constructed based on Gigabit Ethernet; a standard and general hardware platform is designed; software follows Standard Interface of STANAG 4586; the Shelter and Flight Control Console(FCC) are designed based on Ergonomics; that is an exploration for the design of GCS.

2014 ◽  
Vol 02 (02) ◽  
pp. 175-199 ◽  
Author(s):  
Guowei Cai ◽  
Jorge Dias ◽  
Lakmal Seneviratne

This paper provides a brief overview on the recent advances of small-scale unmanned aerial vehicles (UAVs) from the perspective of platforms, key elements, and scientific research. The survey starts with an introduction of the recent advances of small-scale UAV platforms, based on the information summarized from 132 models available worldwide. Next, the evolvement of the key elements, including onboard processing units, navigation sensors, mission-oriented sensors, communication modules, and ground control station, is presented and analyzed. Third, achievements of small-scale UAV research, particularly on platform design and construction, dynamics modeling, and flight control, are introduced. Finally, the future of small-scale UAVs' research, civil applications, and military applications are forecasted.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


Author(s):  
Glesio Garcia de Paiva ◽  
Diego Roberto Colombo Dias ◽  
Marcelo de Paiva Guimarães ◽  
Luis Carlos Trevelin

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4085 ◽  
Author(s):  
Ben Schellenberg ◽  
Tom Richardson ◽  
Arthur Richards ◽  
Robert Clarke ◽  
Matt Watson

A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.


2017 ◽  
Vol 17 (11) ◽  
pp. 1961-1979 ◽  
Author(s):  
Haifeng Huang ◽  
Jingjing Long ◽  
Wu Yi ◽  
Qinglin Yi ◽  
Guodong Zhang ◽  
...  

Abstract. In recent years, unmanned aerial vehicles (UAVs) have become widely used in emergency investigations of major natural hazards over large areas; however, UAVs are less commonly employed to investigate single geo-hazards. Based on a number of successful investigations in the Three Gorges Reservoir area, China, a complete UAV-based method for performing emergency investigations of single geo-hazards is described. First, a customized UAV system that consists of a multi-rotor UAV subsystem, an aerial photography subsystem, a ground control subsystem and a ground surveillance subsystem is described in detail. The implementation process, which includes four steps, i.e., indoor preparation, site investigation, on-site fast processing and application, and indoor comprehensive processing and application, is then elaborated, and two investigation schemes, automatic and manual, that are used in the site investigation step are put forward. Moreover, some key techniques and methods – e.g., the layout and measurement of ground control points (GCPs), route planning, flight control and image collection, and the Structure from Motion (SfM) photogrammetry processing – are explained. Finally, three applications are given. Experience has shown that using UAVs for emergency investigation of single geo-hazards greatly reduces the time, intensity and risks associated with on-site work and provides valuable, high-accuracy, high-resolution information that supports emergency responses.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


2019 ◽  
Vol 9 (15) ◽  
pp. 3196 ◽  
Author(s):  
Lidia María Belmonte ◽  
Rafael Morales ◽  
Antonio Fernández-Caballero

Personal assistant robots provide novel technological solutions in order to monitor people’s activities, helping them in their daily lives. In this sense, unmanned aerial vehicles (UAVs) can also bring forward a present and future model of assistant robots. To develop aerial assistants, it is necessary to address the issue of autonomous navigation based on visual cues. Indeed, navigating autonomously is still a challenge in which computer vision technologies tend to play an outstanding role. Thus, the design of vision systems and algorithms for autonomous UAV navigation and flight control has become a prominent research field in the last few years. In this paper, a systematic mapping study is carried out in order to obtain a general view of this subject. The study provides an extensive analysis of papers that address computer vision as regards the following autonomous UAV vision-based tasks: (1) navigation, (2) control, (3) tracking or guidance, and (4) sense-and-avoid. The works considered in the mapping study—a total of 144 papers from an initial set of 2081—have been classified under the four categories above. Moreover, type of UAV, features of the vision systems employed and validation procedures are also analyzed. The results obtained make it possible to draw conclusions about the research focuses, which UAV platforms are mostly used in each category, which vision systems are most frequently employed, and which types of tests are usually performed to validate the proposed solutions. The results of this systematic mapping study demonstrate the scientific community’s growing interest in the development of vision-based solutions for autonomous UAVs. Moreover, they will make it possible to study the feasibility and characteristics of future UAVs taking the role of personal assistants.


Sign in / Sign up

Export Citation Format

Share Document