Grain Subdivision and Its Effect on Texture Evolution in an Aluminum Alloy Under Plane Strain Compression

Author(s):  
Q. Ma ◽  
W. Mao ◽  
B. Li ◽  
P. T. Wang ◽  
M. F. Horstemeyer
2018 ◽  
Vol 941 ◽  
pp. 1198-1202
Author(s):  
Dong Keun Han ◽  
Min Soo Park ◽  
Han Sang Kwon ◽  
Kwon Hoo Kim

In previous study, it was investigated texture formation behaviour of high-temperature plane strain compression test at 723K, under a strain rate of 5.0. It was found that the main texture component and it was sharpness vary depending on deformation conditions. To clarify the characteristic of texture formation behaviour, it is necessary to investigate at various deformation condition. Therefore, in this study, is investigating the influence or texture formation behaviour and strain, strain rate at 673K. Three kinds of specimens with different initial textures were machined out from a rolled plate having a <0001> texture. The plane strain compression tests were conducted at a temperature 673K, and a strain rate of 5.0, with strain between-0.4 to-1.0. After compression tests, the specimens were immediately quenched in oil. The texture evolution was conducted by the Schulz reflection method using Cu Kα radiation and EBSD. Before the deformation, {0001} of specimen A was accumulated in the center of pole figure. The {0001} of specimen B was accumulated at the RD direction. The {0001} of specimen C was accumulated TD direction. As a result, work softening is observed in all the cases at the true stress – true strain curve for three types of specimens. After deformation, the maximum pole density of increases with increasing strain. In this study, it was found that the stable orientation was (0001)<100> and (0001)<110> during deformation.


2007 ◽  
Vol 550 ◽  
pp. 539-544 ◽  
Author(s):  
Pablo Rodriguez-Calvillo ◽  
Roumen H. Petrov ◽  
Yvan Houbaert ◽  
Leo Kestens

Electrical steels, in particular Fe-Si alloys, are used as magnetic flux carrier in transformers and motors because of their excellent magnetic properties. They owe these magnetic properties in part to the presence of specific texture components such as the Goss ({110} <001>) or the cube components ({001} <010>), but also to the chemical composition which is optimum with 6.5 wt. % Si. This high silicon content provides a stable BCC lattice structure to the alloy over the entire solid state domain, but also renders the material more brittle. This embrittlement, which is induced by ordering phenomena, makes it impossible to produce the alloy in a conventional rolling process unless a specific thermomechanical route at high temperature is applied. In order to examine the working behaviour of high Si electrical steels, a series of room temperature plane strain compression tests was carried out on a Fe-3%Si alloy in hot band condition. The samples were compressed with a constant strain rate of 20 s-1 to a reduction of 10, 35 and 70% and subsequently annealed for different times at 800 and 900°C in an electrical furnace without protecting atmosphere. The hot rolled microstructure displayed an average grain size of 195 7m and the texture showed on the cube component ({001} <010>) of maximum 5x random levels. After plane strain compression the samples developed the conventional α (<110> // RD) / γ (<111> // ND) fibre texture by plastic shear which was also accommodated, in part, by mechanical twinning. With regard to the annealed material, it was observed that the recrystallisation started in grains with the higher stored energy and within the shear bands. After a reduction of 70% the samples that were annealed at 800°C for 4 hours displayed an average grain size of 27 7m and a relative maximum of 4x random on the cube component. Also other less intense components such as the rotated cube ({001} <110>) and the Goss ({110} <001>) were present in the annealing texture. The samples that were annealed at 900°C, after a reduction of 70%, were characterized by an average grain size of 36 7m and by the appearance of the {111} <121> γ fibre component with an intensity of 4.7.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hamad F. Alharbi ◽  
Monis Luqman ◽  
Ehab El-Danaf ◽  
Nabeel H. Alharthi

The deformation behavior and texture evolution of pure magnesium were investigated during plane strain compression, simple compression, and uniaxial tension at room temperature. The distinctive stages in the measured anisotropic stress-strain responses and numerically computed strain-hardening rates were correlated with texture and deformation mechanisms. More specifically, in plane strain compression and simple compression, the onset of tensile twins and the accompanying texture-hardening effect were associated with the initial high strain-hardening rates observed in specimens loaded in directions perpendicular to the crystallographic c-axis in most of the grains. The subsequent drop in strain-hardening rates in these samples was correlated with the exhaustion of tensile twins and the activation of pyramidal <c+a> slip systems. The falling strain-hardening rates were observed in simple compression and plane strain compression with loading directions parallel to the c-axis where the second pyramidal <c+a> slip systems were the only slip families that can accommodate deformation. For uniaxial tension with the basal plane parallel to the tensile axis, the prismatic <a> and second pyramidal <c+a> slips are the main deformation mechanisms. The predicted relative slip and twin activities from the crystal plasticity simulations clearly showed the effect of texture on the type of activated deformation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document