Fractional-Order Integral Sliding Mode Controller for Biaxial Motion Control System

Author(s):  
Xi Yu ◽  
Huan Zhao ◽  
Xiangfei Li ◽  
Han Ding
Author(s):  
Fayez F. M. El-Sousy

In this paper, a robust hybrid control system (RHCS) for achieving high precision motion tracking performance of a two-axis motion control system is proposed. The proposed AHCS incorporating a recurrent wavelet-neuralnetwork controller (RWNNC) and a sliding-mode controller (SMC) to construct a RRWNNSMC. The two-axis motion control system is an x-y table of a computer numerical control machine that is driven by two field-oriented controlled permanent-magnet synchronous motors (PMSMs) servo drives. The RWNNC is used as the main motion tracking controller to mimic a perfect computed torque control law and the SMC controller is designed with adaptive bound estimation algorithm to compensate for the approximation error between the RWNNC and the ideal controller. The on-line learning algorithms of the connective weights, translations and dilations of the RWNNC are derived using Lyapunov stability analysis. A computer simulation and an experimental are developed to validate the effectiveness of the proposed RHCS. All control algorithms are implemented in a TMS320C31 DSP-based control computer. The simulation and experimental results using star and four leaves contours are provided to show the effectiveness of the RHCS. The motion tracking performance is significantly improved using the proposed RHCS and robustness to parameter variations, external disturbances, cross-coupled interference and frictional torque can be obtained as well for the two-axis motion control system.


Author(s):  
Zebin Yang ◽  
Kun Wang ◽  
Xiaodong Sun ◽  
Xiaoting Ye

In order to improve the capability of load disturbance resistance of vector control system for a bearingless induction motor, a control strategy of the bearingless induction motor based on sliding mode speed controller and load torque observer is proposed. The control strategy uses fractional integral of velocity error and designs the nonlinear integral order sliding mode surface, and then a new bearingless induction motor speed control system is constructed. The extended sliding mode observer is designed with the rotor position, rotational speed and load torque as the observation object. The low-pass filter is used to weaken the high-frequency chattering of the sliding mode control to improve the accuracy of the observation, and the load torque observation value is compensated to the fractional-order integral sliding mode speed controller. The simulation and experimental results show that the proposed scheme achieves accurate and fast tracking of the load torque, effectively suppresses the chattering and improves the robustness of the system. The control system improves the resistance capacity against load disturbance and has better dynamic performance.


Author(s):  
Xiaocong He ◽  
Lingfei Xiao

Abstract This paper presents a robust fault identification scheme based on fractional-order integral sliding mode observer (FOISMO) for turbofan engine sensors with uncertainties. The equilibrium manifold expansion (EME) model is introduced due to its simplicity and accuracy for nonlinear system. A fractional-order integral sliding mode observer is designed to reconstruct faults on sensors, in which the fractional-order integral sliding surface guarantees the fast convergence of reconstruction. The observer parameters is selected according to L2 gain theory in order to minimize the effect of uncertainties on the fault reconstruction signal. Simulations in Matlab/Simulink show high reconstruction accuracy of the proposed method despite the present of uncertainties.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chenhui Wang

Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods.


2021 ◽  
Vol 18 (2) ◽  
pp. 88-97
Author(s):  
T.J. Shima ◽  
H.A. Bashir

An integral sliding mode controller (ISMC) which employs particle swarm optimization (PSO) algorithm to search for optimal values of the parameters of the integral sliding manifold as well as the gains of the controller is proposed in this work. We considered the swing-up and stabilization of the cart-inverted pendulum system which is assumed to be affected by uncertainties. First, we determined the swing-up and stabilization conditions of the control system by using the internal dynamics of the cart-inverted pendulum system and sliding mode dynamics. A PSO algorithm is then used to search for the optimal values of the ISMC design parameters that satisfy the stabilization condition with the aim of improving the transient performance of the control system. To mitigate the chattering phenomenon, a saturation function of the integral sliding variable was used in the discontinuous control law. Simulation results on swing-up and stabilization of the cart-inverted pendulum system revealed improvement in transient behaviour by reducing settling time (by 52.61%), overshoots (by 45.56%) and required track length for cart movement (by 68.34%).


Sign in / Sign up

Export Citation Format

Share Document