Non-traveling Wave Exact Solutions of (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama Equation

Author(s):  
Najva Aminakbari ◽  
Guo-qiang Dang ◽  
Yong-yi Gu ◽  
Wen-jun Yuan
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fanning Meng ◽  
Yongyi Gu

In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water (gSW) equation into the complex differential equations by applying traveling wave transform and show that meromorphic solutions of these complex differential equations belong to class W, and then, we get exact solutions of these two (3+1)-dimensional equations.


Author(s):  
Shuang Liu ◽  
Yao Ding ◽  
Jian-Guo Liu

AbstractBy employing the generalized$(G'/G)$-expansion method and symbolic computation, we obtain new exact solutions of the (3 + 1) dimensional generalized B-type Kadomtsev–Petviashvili equation, which include the traveling wave exact solutions and the non-traveling wave exact solutions showed by the hyperbolic function and the trigonometric function. Meanwhile, some interesting physics structure are discussed.


2012 ◽  
Vol 17 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Hossein Jafari ◽  
Atefe Sooraki ◽  
Yahya Talebi ◽  
Anjan Biswas

In this paper, the first integral method will be applied to integrate the Davey–Stewartson’s equation. Using this method, a few exact solutions will be obtained using ideas from the theory of commutative algebra. Finally, soliton solution will also be obtained using the traveling wave hypothesis.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050004 ◽  
Author(s):  
Jianli Liang ◽  
Longkun Tang ◽  
Yonghui Xia ◽  
Yi Zhang

In 2014, Khalil et al. [2014] proposed the conformable fractional derivative, which obeys chain rule and the Leibniz rule. In this paper, motivated by the monograph of Jibin Li [Li, 2013], we study the exact traveling wave solutions for a class of third-order MKdV equations with the conformable fractional derivative. Our approach is based on the bifurcation theory of planar dynamical systems, which is much different from the simplest equation method proposed in [Chen & Jiang, 2018]. By employing the traveling wave transformation [Formula: see text] [Formula: see text], we reduce the PDE to an ODE which depends on the fractional order [Formula: see text], then the analysis depends on the order [Formula: see text]. Moreover, as [Formula: see text], the exact solutions are consistent with the integer PDE. However, in all the existing papers, the reduced ODE is independent of the fractional order [Formula: see text]. It is believed that this method can be applicable to solve the other nonlinear differential equations with the conformable fractional derivative.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Rashidi ◽  
D. D. Ganji ◽  
S. Dinarvand

The homotopy analysis method (HAM) is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup (WBK) equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.


2019 ◽  
Vol 8 (1) ◽  
pp. 157-163 ◽  
Author(s):  
K. Hosseini ◽  
A. Bekir ◽  
F. Rabiei

AbstractThe current work deals with the fractional forms of EW and modified EW equations in the conformable sense and their exact solutions. In this respect, by utilizing a traveling wave transformation, the governing space-time fractional models are converted to the nonlinear ordinary differential equations (NLODEs); and then, the resulting NLODEs are solved through an effective method called the exp(−ϕ(ϵ))-expansion method. As a consequence, a number of exact solutions to the fractional forms of EW and modified EW equations are generated.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950328
Author(s):  
En Gui Fan ◽  
Man Wai Yuen

In this paper, by introducing a stream function and new coordinates, we transform classical Euler–Boussinesq equations into a vorticity form. We further construct traveling wave solutions and similarity reduction for the vorticity form of Euler–Boussinesq equations. In fact, our similarity reduction provides a kind of linearization transformation of Euler–Boussinesq equations.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2011 ◽  
Vol 21 (02) ◽  
pp. 527-543 ◽  
Author(s):  
JIBIN LI ◽  
YI ZHANG

For the Lax KdV5 equation and the KdV–Sawada–Kotera–Ramani equation, their corresponding four-dimensional traveling wave systems are studied by using Congrove's method. Exact explicit gap soliton, embedded soliton, periodic and quasi-periodic wave solutions are obtained. The existence of homoclinic manifolds to three kinds of equilibria including a hyperbolic equilibrium, a center-saddle and an equilibrium with zero pair of eigenvalues is revealed. The bifurcation conditions of equilibria are given.


Sign in / Sign up

Export Citation Format

Share Document