About the Influence of Wind Tunnel Walls, Tower and Nozzle on the Performance of a Model Wind Turbine

Author(s):  
Annette Klein (née Fischer) ◽  
Sven Zabel ◽  
Thorsten Lutz ◽  
Ewald Krämer
Keyword(s):  
2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2019 ◽  
Vol 131 ◽  
pp. 644-659 ◽  
Author(s):  
Wei-Cheng Wang ◽  
Jheng-Jie Wang ◽  
Wen Tong Chong

1992 ◽  
Vol 114 (2) ◽  
pp. 119-124 ◽  
Author(s):  
C. P. Butterfield ◽  
George Scott ◽  
Walt Musial

Horizontal axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. However, when stall-regulated HAWT performance is measured in full-scale operation, it is common to find that peak power levels are significantly greater than those predicted. Pitch-controlled rotors experience predictable peak power levels because they do not rely on stall to regulate peak power. This has led to empirical corrections to the stall predictions. Viterna and Corrigan (1981) proposed the most popular version of this correction. But very little insight has been gained into the basic cause of this discrepancy. The National Renewable Energy Laboratory (NREL), funded by the DOE, has conducted the first phase of an experiment which is focused on understanding the basic fluid mechanics of HAWT aerodynamics. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs for even small yaw angles and delayed stall is a very persistent reality in all operating conditions. Delayed stall is indicated by a leading edge suction peak which remains attached through angles of attack (AOA) up to 30 degrees. Wind tunnel results show this peak separating from the leading edge at 18 deg AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increased tangent forces will directly affect HAWT performance in high wind speed operation. This report describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data which is compared to the wind tunnel data. The analysis technique and the test set-up for each test are described.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Michał Lipian ◽  
Maciej Karczewski ◽  
Krzysztof Olasek

AbstractThe Diffuser Augmented Wind Turbine (DAWT) is an innovative mean to increase the power harvested by wind turbine. By encompassing the rotor with a diffusershaped duct it is possible to increase the flow speed through the turbine by about 40-50%. The study presents the development of a numerical model and its validation by the experiments performed in the wind tunnel of the Institute of Turbomachinery, TUL. Then, the numerical model is used for the geometry sensitivity study to optimize the shape of a diffuser. The paper presents that the DAWT technology has the potential to even double the power outcome of wind turbine when compared to a bare rotor version.


Energy ◽  
2016 ◽  
Vol 104 ◽  
pp. 295-307 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Toshiaki Kawabata ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


Sign in / Sign up

Export Citation Format

Share Document