Why You Should Use High-Frequency Data to Test the Impact of Exchange Rate on Trade

Author(s):  
Karam Shaar ◽  
Mohammed Khaled
2017 ◽  
Author(s):  
Rim mname Lamouchi ◽  
Russell mname Davidson ◽  
Ibrahim mname Fatnassi ◽  
Abderazak Ben mname Maatoug

2020 ◽  
Vol 19 (3) ◽  
pp. 59-77
Author(s):  
Shruti Garg

The paper aims to find the impact of financial events that occurred in one country on another. Taking the case of the Swiss Franc Unpegging of 2015 in Switzerland, the paper observes its impact on the Indian economy. This is done by studying the information asymmetry and herding behaviour in Indian market on the day of the event. The study uses two sets of data, (i) high frequency data and (ii) 3 years index data of both countries. The Ganger Causality test has been conducted to study the cause and effect relationship between the economies, which helps determine the impact on any of the countries. The study found that herding behaviour and information asymmetry in Indian market are now linked to each other in such a way that the country is affected even if the event has not occurred in the economy itself, however, only for a short duration of time. There also seems to be a huge gap between information available amongst all investors.


2017 ◽  
Vol 24 (3) ◽  
pp. 209-238 ◽  
Author(s):  
Sebastian Edwards

In December 1933, John Maynard Keyes published an open letter to President Roosevelt, where he wrote: ‘The recent gyrations of the dollar have looked to me more like a gold standard on the booze than the ideal managed currency of my dreams.’ This was a criticism of the ‘gold-buying program’ launched in October 1933. In this article I use high-frequency data on the dollar–pound and dollar–franc exchange rates to investigate whether the gyrations of the dollar were unusually high in late 1933. My results show that although volatility was pronounced, it was not higher than during some other periods after 1921. Moreover, dollar volatility began to subside towards the end of the period alluded to by Keynes.


2020 ◽  
Vol 20 (2) ◽  
pp. 151
Author(s):  
Jonas Rende

Recently, the persistence-based decomposition (PBD) model has been introduced to the scientific community by Rende et al. (2019). It decomposes a spread time series between two securities into three components capturing infinite, finite, and no shock persistence. The authors provide empirical evidence that the model adopts well to noisy high-frequency data in terms of model fitting and prediction. We put the PBD model to test on a large-scale high-frequency pairs trading application, using SP 500 minute-by-minute data from 1998 to 2016. After accounting for execution limitations (waiting rule, volume constraints, and short-selling fees) the PBD model yields statistically significant and economically meaningful annual returns after transaction costs of 9.16 percent. These returns can only partially be explained by the exposure to common risk. In addition, the model is superior in terms of risk-return metrics. The model performs very well in bear markets. We quantify the impact of execution limitations on risk and return measures by relaxing backtesting restrictions step-by-step. If no restrictions are imposed, we find annual returns after costs of 138.6 percent.


2018 ◽  
Vol 11 (2) ◽  
pp. 20-37
Author(s):  
Vinay Kumar Apparaju ◽  
Ashwani Kumar ◽  
Ritu Yadav

The research paper develops an understanding on how news based sentiment capture investor behaviour reflected in price jumps in stock markets. It compares the impact on two models of stock price jumps; the non-parametric model proposed by BNS and the wavelet based method. The study is also a perspective on the semi strong form of market efficiencyUsing the high frequency data from the stock and options market along with the actual high frequency news data from Bloomberg, the two alternative methodologies of jumps have been tested. In addition, options trades have been simulated to see whether profits can be earned from the news sentiment captured by jumps.Methodologically, jumps based on wavelets were found to be better related  with the news sentiment compared to the BNS method. Also,   the news sentiment based jumps were found to present opportunities in the simulated trades that could be exploited for earning profits suggesting that investors overreact.The paper uses an innovative method for computation of the news based sentiment. To the best of our knowledge, the paper is the first to evaluate jumps and news sentiment using the actual news data. A perspective on the semi strong form of market efficiency is presented, that too by departing from the event study based models. 


Sign in / Sign up

Export Citation Format

Share Document