Mechanical characterization of biodegradable materials used in surgery

Author(s):  
Angela Andrzejewska
2015 ◽  
Vol 645-646 ◽  
pp. 259-264 ◽  
Author(s):  
Guo Zhong Li ◽  
Geng Chen Shi ◽  
Li Sui ◽  
Fu Ting Yi ◽  
Bo Wang

As one of the significant structural materials used in safe and arming system of MEMS fuze, the research on micro-electroforming process technologies and micro-electroforming nickel’s properties have been a popular field for MEMS area. This paper surveys present domestic and overseas research status of mechanical characterization of electroformed nickel, summarizes and analyzes that changes of the microstructure led by parameters of micro-electroforming process and the external environment make great effects.


Cellulose ◽  
2020 ◽  
Author(s):  
Rahul Mangayil ◽  
Antti J. Rissanen ◽  
Arno Pammo ◽  
Dieval Guizelini ◽  
Pauli Losoi ◽  
...  

Abstract Bacterial cellulose (BC) is a biodegradable polymer that benefits in purity, crystallinity and superior optical, structural and mechanical properties. Such properties facilitate BC to replace the conventional non-biodegradable materials used, for instance, in sensing applications. However, BC production is largely conducted in conventional medium containing model substrates and complex carbon-containing compounds. Aiming towards the production of eco-friendly piezoelectric-responsive BC films, we isolated and characterized a novel bacterial strain affiliated to Komagataeibacter rhaeticus. The K. rhaeticus ENS9a strain synthesized BC in minimal medium containing crude glycerol, generating a titer of 2.9 ± 0.3 g/L BC. This is, to the best of our knowledge, the highest BC titer reported from an unoptimized minimal medium containing crude glycerol. Interestingly, the films prepared from crude glycerol showed normal force and bending mode sensitivities of 6–11 pC/N and 40–71 pC/N, respectively, demonstrating a green platform to address both bioprocess waste valorization and implementation of cellulose-based alternatives for the non-sustainable and non-biodegradable materials, such as fluoropolymers or lead containing piezoceramics, used in sensing applications. In silico genome analysis predicted genes partaking in carbohydrate metabolism, BC biogenesis, and nitrogen fixation/regulation. Graphic abstract


Author(s):  
C Carausu ◽  
S-N Mazurchevici ◽  
A-D Mazurchevici ◽  
L Andrusca ◽  
R Comaneci ◽  
...  

2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document