Nonlinear Ionic Conductivity of Solid Electrolytes and Supercooled Ionic Liquids

Author(s):  
B. Roling ◽  
L. N. Patro ◽  
O. Burghaus
2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


Author(s):  
Ya-Hui Wang ◽  
Junpei Yue ◽  
Wen-Peng Wang ◽  
Wan-Ping Chen ◽  
Ying Zhang ◽  
...  

Due to high ionic conductivity, favorable mechanical plasticity, and non-flammable properties, inorganic sulfide solid electrolytes bring opportunities to the practical realization of rechargeable Li-metal batteries with high energy, yet their...


ChemInform ◽  
2009 ◽  
Vol 40 (8) ◽  
Author(s):  
Sadok Letaief ◽  
Thomas Diaco ◽  
Wendy Pell ◽  
Serge I. Gorelsky ◽  
Christian Detellier

1988 ◽  
Vol 135 ◽  
Author(s):  
Werner Weppner

Solid State ion conductors are sucessfully employed in chemical sensors for gases such as oxygen for process control and environmental protection. The application requires elevated temperatures for sufficiently high ionic conductivity and is restricted to a few gases for which suitable solid electrolytes are available.


Author(s):  
C.S. Martínez-Cisneros ◽  
B. Pandit ◽  
C. Antonelli ◽  
J.Y. Sanchez ◽  
B. Levenfeld ◽  
...  

Author(s):  
Weixiao Ji ◽  
Dong Zheng ◽  
Xiaoxiao Zhang ◽  
Tianyao Ding ◽  
Deyang Qu

Despite excellent ionic conductivity and electrochemical oxidative stability, the emerging halide-based solid electrolytes suffer from inherent instability toward Li metal anode. A thick and resistive interface can be formed by...


2021 ◽  
pp. 2130005
Author(s):  
Qing Huang ◽  
Gongxuan Chen ◽  
Ping Zheng ◽  
Wei Li ◽  
Tian Wu

The demand for electrical energy storage (EES) is ever increasing in order to develop better batteries. NASICON-structured Na ion conductor represents a class of solid electrolytes, which is of great interest due to its superior ionic conductivity and stable structures. They are widely employed in all-solid-state ion batteries, all-solid-state air batteries, and hybrid batteries. In this review, their structure, composition, properties, and applications for next generation energy storage are reviewed.


Sign in / Sign up

Export Citation Format

Share Document