Review of Numerical Models for Studying the Dynamic Response of Deep Foundations for the Design and Project of Wind Turbines

Author(s):  
G. M. Álamo ◽  
J. D. R. Bordón ◽  
F. García ◽  
J. J. Aznárez ◽  
L. A. Padrón ◽  
...  
Author(s):  
Marco Masciola ◽  
Xiaohong Chen ◽  
Qing Yu

As an alternative to the conventional intact stability criterion for floating offshore structures, known as the area-ratio-based criterion, the dynamic-response-based intact stability criteria was initially developed in the 1980s for column-stabilized drilling units and later extended to the design of floating production installations (FPIs). Both the area-ratio-based and dynamic-response-based intact stability criteria have recently been adopted for floating offshore wind turbines (FOWTs). In the traditional area-ratio-based criterion, the stability calculation is quasi-static in nature, with the contribution from external forces other than steady wind loads and FOWT dynamic responses captured through a safety factor. Furthermore, the peak wind overturning moment of FOWTs may not coincide with the extreme storm wind speed normally prescribed in the area-ratio-based criterion, but rather at the much smaller rated wind speed in the power production mode. With these two factors considered, the dynamic-response-based intact stability criterion is desirable for FOWTs to account for their unique dynamic responses and the impact of various operating conditions. This paper demonstrates the implementation of a FOWT intact stability assessment using the dynamic-response-based criterion. Performance-based criteria require observed behavior or quantifiable metrics as input for the method to be applied. This is demonstrated by defining the governing load cases for two conceptual FOWT semisubmersible designs at two sites. This work introduces benchmarks comparing the area-ratio-based and dynamic-response-based criteria, gaps with current methodologies, and frontier areas related to the wind overturning moment definition.


Author(s):  
Bingbin Yu ◽  
Dale G. Karr ◽  
Huimin Song ◽  
Senu Sirnivas

Developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamic response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. The use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.


2021 ◽  
Vol 9 (1) ◽  
pp. 96-103
Author(s):  
Ruba Asim Hamza ◽  
Amged Osman Abdelatif

Sudan is one of the developing countries that suffers from a lack of electricity, where the national electrification rate is estimated at 38.5%. In order to solve this problem, it is possible to use renewable energy sources such as wind energy. Beside many aspects to be considered at the design of wind turbine foundations, more attention should be given to the geotechnical part. There are many types of foundations for wind turbines. The foundation must satisfy two design criteria: 1) It should be safe against bearing failure in soils under design loads and settlements during the life of the structure must not cause structural damage; 2) In addition to static loads, wind turbine foundations loads are extremely eccentrically and the loading is usually highly dynamic. Therefore, the selection of foundation type should consider these two criteria taking into account the nature and magnitude of these loads. This paper presents a review of different types of wind turbine foundations of focusing on on-shore wind turbine foundation types and the dynamic response of wind turbine. The paper also demonstrate experimentally the dynamic response of the wind turbines using wind tunnel facility test on a scaled model.  


2019 ◽  
Vol 19 (09) ◽  
pp. 1950105
Author(s):  
Gonzalo Barrios ◽  
Vinuka Nanayakkara ◽  
Pramodya De Alwis ◽  
Nawawi Chouw

In conventional seismic design, the structure is often assumed to be fixed at the base. However, this assumption does not reflect reality. Furthermore, if the structure has close neighbors, the adjacent structures will alter the response of the structure considered. Investigations on soil–structure interaction and structure–soil–structure interaction have been performed mainly using numerical models. The present work addresses the dynamic response of adjacent single-degree-of-freedom models on a laminar box filled with sand. Impulse loads and simulated ground motions were applied. The standalone condition was also studied as a reference case. Models with different fundamental frequencies and slenderness were considered. Results from the impulse tests showed that the top displacement of the models with an adjacent structure was reduced compared with that of the standalone case. Changes in the fundamental frequency of the models due to the presence of an adjacent model were also observed. Results from ground motions showed amplification of the maximum acceleration and the top displacement of the models when both structures have a similar fundamental frequency.


Sign in / Sign up

Export Citation Format

Share Document