Missing Link Prediction in Social Networks

Author(s):  
Jin Zhou ◽  
Chiman Kwan
Author(s):  
Gogulamudi Naga Chandrika ◽  
E. Srinivasa Reddy

<p><span>Social Networks progress over time by the addition of new nodes and links, form associations with one community to the other community. Over a few decades, the fast expansion of Social Networks has attracted many researchers to pay more attention towards complex networks, the collection of social data, understand the social behaviors of complex networks and predict future conflicts. Thus, Link prediction is imperative to do research with social networks and network theory. The objective of this research is to find the hidden patterns and uncovered missing links over complex networks. Here, we developed a new similarity measure to predict missing links over social networks. The new method is computed on common neighbors with node-to-node distance to get better accuracy of missing link prediction. </span><span>We tested the proposed measure on a variety of real-world linked datasets which are formed from various linked social networks. The proposed approach performance is compared with contemporary link prediction methods. Our measure makes very effective and intuitive in predicting disappeared links in linked social networks.</span></p>


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Huaizhen Kou ◽  
Fan Wang ◽  
Chao Lv ◽  
Zhaoan Dong ◽  
Wanli Huang ◽  
...  

With the development of mobile Internet, more and more individuals and institutions tend to express their views on certain things (such as software and music) on social platforms. In some online social network services, users are allowed to label users with similar interests as “trust” to get the information they want and use “distrust” to label users with opposite interests to avoid browsing content they do not want to see. The networks containing such trust relationships and distrust relationships are named signed social networks (SSNs), and some real-world complex systems can be also modeled with signed networks. However, the sparse social relationships seriously hinder the expansion of users’ social circle in social networks. In order to solve this problem, researchers have done a lot of research on link prediction. Although these studies have been proved to be effective in the unsigned social network, the prediction of trust and distrust in SSN has not achieved good results. In addition, the existing link prediction research does not consider the needs of user privacy protection, so most of them do not add privacy protection measures. To solve these problems, we propose a trust-based missing link prediction method (TMLP). First, we use the simhash method to create a hash index for each user. Then, we calculate the Hamming distance between the two users to determine whether they can establish a new social relationship. Finally, we use the fuzzy computing model to determine the type of their new social relationship (e.g., trust or distrust). In the paper, we gradually explain our method through a case study and prove our method’s feasibility.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 214
Author(s):  
Pokpong Songmuang ◽  
Chainarong Sirisup ◽  
Aroonwan Suebsriwichai

The current methods for missing link prediction in social networks focus on using data from overlapping users from two social network sources to recommend links between unconnected users. To improve prediction of the missing link, this paper presents the use of information from non-overlapping users as additional features in training a prediction model using a machine-learning approach. The proposed features are designed to use together with the common features as extra features to help in tuning up for a better classification model. The social network data sources used in this paper are Twitter and Facebook where Twitter is a main data for prediction and Facebook is a supporting data. For evaluations, a comparison using different machine-learning techniques, feature settings, and different network-density level of data source is studied. The experimental results can be concluded that the prediction model using a combination of the proposed features and the common features with Random Forest technique gained the best efficiency using percentage amount of recovering missing links and F1 score. The model of combined features yields higher percentage of recovering link by an average of 23.25% and the F1-measure by an average of 19.80% than the baseline of multi-social network source.


Sign in / Sign up

Export Citation Format

Share Document