Numerical Analysis of the Long-Term Performance of Energy Piles in Sand

Author(s):  
Kang Fei ◽  
Wei Hong ◽  
Jian Qian
Author(s):  
D. Cerra ◽  
M. Alberdi-Pagola ◽  
T.R. Andersen ◽  
K.W. Tordrup ◽  
S.E. Poulsen

We assess the feasibility of a collective district heating and cooling network based on a foundation pile heat exchanger in a new urban area in Vejle, Denmark. A thermogeological model for the area is developed based on geophysical investigations and borehole information. In tandem with a building energy demand model, the subsurface thermal properties serve as the input for a newly developed computational temperature model for collective heating and cooling with energy piles. The purpose of the model is to estimate the long-term performance and maximum liveable area that the energy piles are able to support. We consider two case studies where residential and office buildings dominate the building mass. We find that three to four floors can be supplied with heating and cooling from the energy piles, depending on the use and design of the buildings.


Author(s):  
C. Guney Olgun ◽  
Sherif L. Abdelaziz ◽  
James R. Martin

2020 ◽  
Vol 146 ◽  
pp. 1177-1191 ◽  
Author(s):  
Melis Sutman ◽  
Gianluca Speranza ◽  
Alessio Ferrari ◽  
Pyrène Larrey-Lassalle ◽  
Lyesse Laloui

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7819
Author(s):  
Ding Nie ◽  
Haoyu Wang ◽  
Pengfei Li ◽  
Xun Han ◽  
Jingbin Zhang ◽  
...  

Hydropower dams are subjected to soft water penetration during their service lives. Concrete deterioration due to calcium leaching will decrease the durability of concrete and affect dam safety. The long-term performance of concrete dams due to calcium leaching should be evaluated and predicted accurately to complete reinforcement work in a timely manner. In this paper, a methodology that combined microscopic tests and numerical analysis to evaluate the long-term performance of dam concrete due to calcium leaching is proposed. The current state of concrete is evaluated by analyzing the components of sediments and seepage water through microscopic and spectroscopic tests, such as X-ray photoelectron spectroscopy, scanning electron microscopy, and inductively coupled plasma mass spectrometry. The long-term degradation of concrete was predicted by utilizing a multi-scale model of calcium leaching, which considered the micro-pore structure of cement hydrates flux with time. The simulated results using this calcium leaching model showed a good agreement with other experiments. Finally, a real case study including field inspection was performed and the long-term durability of dam concrete was predicted through microscopic tests and finite element analysis method. It implies that the proposed method could provide calculation and theoretical basis for the durability analysis of concrete dams due to calcium leaching.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2020 ◽  
Author(s):  
C. P. Germann ◽  
M. Bergmann ◽  
J. Nordmeyer ◽  
B. Peters ◽  
F. Berger ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document