Decentralized Control Scheme for Coupling Between Undulatory and Peristaltic Locomotion

Author(s):  
Takeshi Kano ◽  
Naoki Matsui ◽  
Akio Ishiguro
Author(s):  
Ezzeddine Touti ◽  
Ali Sghaier Tlili ◽  
Muhannad Almutiry

Purpose This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded. Design/methodology/approach Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs). Findings The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system. Originality/value The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.


Robotica ◽  
2000 ◽  
Vol 18 (5) ◽  
pp. 495-504 ◽  
Author(s):  
Khalid Munawar ◽  
Masayoshi Esashi ◽  
Masaru Uchiyama

This paper introduces an event-based decentralized control scheme for the cooperation between multiple manipulators. This is in contrast to the common practice of using only centralized controls for such cooperation which, consequently, greatly limit the flexibility of robotic systems. The manipulators used in the present system are very simple with only two degrees of freedom, while even one of them is passive. Moreover these manipulators use very few and commonly available sensors only. Computer simulations indicated the applicability of the event-based decentralized control scheme for multi-manipulator cooperation, while real-life experimental implementation has proved that the proposed decentralized control scheme is fairly applicable for very simple and even under-actuated systems too. Hence, this work has opened new doors towards further research in this area. The proposed control scheme is expected to be equally applicable for any mobile or immobile multi-robotic system.


2020 ◽  
Vol 26 (2) ◽  
pp. 242-259 ◽  
Author(s):  
Takeshi Kano ◽  
Eiichi Naito ◽  
Takenobu Aoshima ◽  
Akio Ishiguro

A swarm robotic system is a system in which multiple robots cooperate to fulfill a macroscopic function. Many swarm robots have been developed for various purposes. This study aims to design swarm robots capable of executing spatially distributed tasks effectively, which can be potentially used for tasks such as search-and-rescue operation and gathering scattered garbage in rooms. We propose a simple decentralized control scheme for swarm robots by extending our previously proposed non-reciprocal-interaction-based model. Each robot has an internal state, called its workload. Each robot first moves randomly to find a task, and when it does, its workload increases, and then it attracts its neighboring robots to ask for their help. We demonstrate, via simulations, that the proposed control scheme enables the robots to effectively execute multiple tasks in parallel under various environments. Fault tolerance of the proposed system is also demonstrated.


2019 ◽  
Vol 10 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Ameen Hassan Yazdavar ◽  
Maher Abdelkhalek Azzouz ◽  
Ehab F. El-Saadany

2011 ◽  
Vol 9 (66) ◽  
pp. 102-109 ◽  
Author(s):  
Wataru Watanabe ◽  
Takeshi Kano ◽  
Shota Suzuki ◽  
Akio Ishiguro

Autonomous decentralized control is a key concept for understanding the mechanism underlying the adaptive and versatile behaviour of animals. Although the design methodology of decentralized control based on a dynamical system approach that can impart adaptability by using coupled oscillators has been proposed in previous studies, it cannot reproduce the versatility of animal behaviours comprehensively. Therefore, our objective is to understand behavioural versatility from the perspective of well-coordinated rhythmic and non-rhythmic movements. To this end, we focus on ophiuroids as a simple good model of living organisms that exhibit spontaneous role assignment of rhythmic and non-rhythmic arm movements, and we model such arm movements by using an active rotator model that can describe both oscillatory and excitatory properties. Simulation results show that the spontaneous role assignment of arm movements is successfully realized by using the proposed model, and the simulated locomotion is qualitatively equivalent to the locomotion of real ophiuroids. This fact can potentially facilitate a better understanding of the control mechanism responsible for the orchestration of versatile arm movements in ophiuroid omnidirectional locomotion.


1992 ◽  
Vol 7 (1) ◽  
pp. 294-300 ◽  
Author(s):  
D.J. Trudnowski ◽  
D.A. Pierre ◽  
J.R. Smith ◽  
A. Adapa

Sign in / Sign up

Export Citation Format

Share Document