Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment

Author(s):  
Mansi Shah ◽  
Ravi Bhatia
2018 ◽  
Vol 24 (4) ◽  
pp. 450-462 ◽  
Author(s):  
Bin Zhang ◽  
Le Xuan Truong Nguyen ◽  
Ling Li ◽  
Dandan Zhao ◽  
Bijender Kumar ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1670-1670
Author(s):  
Daniela S. Krause ◽  
Keertik Fulzele ◽  
Andre Catic ◽  
Michael Hurley ◽  
Sanon Lezeau ◽  
...  

Abstract Abstract 1670 It is known that osteoblastic cells regulate the normal hematopoietic stem cell (HSC) niche and control its size. Parathyroid hormone (PTH) is an important regulator of osteoblasts and osteoclasts maintaining calcium homeostasis and, additionally, increasing HSC number in transplant recipients and protecting HSCs from repeated exposure to cytotoxic chemotherapy. We, therefore, hypothesized, that PTH-treatment may allow normal HSCs to outcompete leukemic stem cells (LSCs) in a murine model of chronic myelogenous leukemia. Mice with osteoblastic cell-specific constitutive activation of the receptor for PTH and PTH-related protein (Col1-caPPR mice) are characterized by activation of osteoblastic cells and increases in osteoclast and osteoblast number, trabecular bone, bone turnover and cortical porosity. Col1-caPPR mice have significantly prolonged survival and reduced leukemic mortality compared to wildtype (wt) littermates in a murine retroviral transduction/transplantation model of BCR-ABL1-induced CML-like disease (p=0.002) and B-cell acute lymphoblastic leukemia (B-ALL) (p=0.0004). However, a leukemogenic fusion transcription factor, MLL-AF9, known to cause acute myeloid leukemia in this model, led to more rapid death in the Col1-caPPR recipients compared with their wt counterparts (p<0.0001), indicating that the increased survival of Col1-caPPR recipients is specific for BCR-ABL1-induced leukemia. Continuous infusion of human PTH(1–34) into wt mice with BCR-ABL1-induced CML led to a statistically significant decrease in spleen weights and decreased bone marrow infiltration by BCR-ABL+ cells. Limiting dilution secondary transplantation of BM cells from saline- or PTH-treated primary animals with fully established CML into wt recipients revealed a 15-fold reduction of LSCs in a PTH-treated environment. Secondary mice who received BM from saline-treated donors had an overall survival that was 1/4 that of recipients of marrow from a PTH-treated BM microenvironment. Transforming growth factor beta-1 (TGFβ-1), whose largest and most concentrated tissue source is bone, was increased in the bones of Col1-caPPR mice. TGFβ-1 significantly decreased the in-vitro growth of the BCR-ABL+ cell line K562, but not the MLL-AF9+ cell line THP-1 suggesting that TGFβ-1, increased in the bone marrow microenvironment of Col1-caPPR mice, may be actively suppressing the growth of the BCR-ABL+ diseases, but not of MLL-AF9+ AML. Conversely, blockade of TGFβ-1, -2, and -3 by anti- TGFβ antibody treatment increased the incidence of CML in Col1-caPPR mice from 50% to 75%. Knockdown of TGF Receptor I in transplanted BCR-ABL+ BM in the CML model increased the percentage of BCR-ABL+ myeloid cells in peripheral blood in wt and, more strikingly, in Col1-caPPR recipient mice and increased the overall incidence of CML in Col1-caPPR mice. These results argue that reduction in TGFβ-1 signaling may rescue the CML phenotype in Col1-caPPR mice. In conclusion, these studies suggest that modulation of the bone marrow microenvironment by PTH reduces the frequency of LSCs in CML, possibly by suppression of LSCs via TGFβ-1. Consequently, a clinical trial on the combined use of imatinib and PTH in patients with CML has been initiated at our institution. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 11 (8) ◽  
pp. 476-490 ◽  
Author(s):  
Mohammad Houshmand ◽  
Teresa Mortera Blanco ◽  
Paola Circosta ◽  
Narjes Yazdi ◽  
Alireza Kazemi ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
D Claxton ◽  
A Deisseroth ◽  
M Talpaz ◽  
C Reading ◽  
H Kantarjian ◽  
...  

Interferon (IFN) therapy of early chronic myelogenous leukemia (CML) frequently produces partial or complete cytogenetic remission of the disease. Patients with complete cytogenetic remission often continue on therapy for several years with bone marrow showing only diploid (normal) metaphases. We studied hematopoiesis in five female patients with major cytogenetic remissions from CML during IFN therapy. Clonality analysis using the BstXI PGK gene polymorphism showed that granulocytes were nonclonal in all patients during cytogenetic remission. BCR region studies showed rearrangement only in the one patient whose remission was incomplete at the time of sampling. Granulopoiesis is nonclonal in IFN-induced remissions of CML and may be derived from normal hematopoietic stem cells.


Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
D Claxton ◽  
A Deisseroth ◽  
M Talpaz ◽  
C Reading ◽  
H Kantarjian ◽  
...  

Abstract Interferon (IFN) therapy of early chronic myelogenous leukemia (CML) frequently produces partial or complete cytogenetic remission of the disease. Patients with complete cytogenetic remission often continue on therapy for several years with bone marrow showing only diploid (normal) metaphases. We studied hematopoiesis in five female patients with major cytogenetic remissions from CML during IFN therapy. Clonality analysis using the BstXI PGK gene polymorphism showed that granulocytes were nonclonal in all patients during cytogenetic remission. BCR region studies showed rearrangement only in the one patient whose remission was incomplete at the time of sampling. Granulopoiesis is nonclonal in IFN-induced remissions of CML and may be derived from normal hematopoietic stem cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2168-2168
Author(s):  
Takayuki Ikezoe ◽  
Chie Nishioka ◽  
Jing Yang ◽  
Satoshi Serada ◽  
Tetsuji Naka ◽  
...  

Abstract Abstract 2168 To identify molecular targets in leukemia stem cells (LSCs), this study compared the protein expression profile of freshly isolated LSCs (CD34+/CD38- compartment) with that of non-LSC (CD34+/CD38+ compartment) counterparts from individuals with acute myelogenous leukemia (AML) using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 98 proteins were overexpressed, while six proteins were underexpressed in LSCs compared with their non-LSC counterparts. Proteins overexpressed in LSCs included a number of proteins involved in DNA repair, cell cycle arrest, gland differentiation, anti-apoptosis, adhesion, and drug resistance. Aberrant expression of CD82, a family of adhesion molecules, in LSCs was noted in additional clinical samples (n=6) by flow cytometry. In addition, we found that imatinib-resistant chronic eosinophilic leukemi EOL-1R cells expressed a greater amount of CD82 and remained in a dormant state compared to the parental EOL-1 cells. Interestingly, down-regulation of CD82 in EOL-1R cells by a small interfering RNA stimulated their migration capacity, as assessed by the transwell assay. These observations suggested that the aberrant expression of CD82 probably played a role in adhesion of hematopoietic cells to bone marrow microenvironment. Targeting CD82 could detach LSCs from bone marrow niche and sensitized these cells to anti-leukemia agents. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document