CD34+/CD38- Leukemia Stem Cells Aberrantly Express CD82 Adhesion Molecule

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2168-2168
Author(s):  
Takayuki Ikezoe ◽  
Chie Nishioka ◽  
Jing Yang ◽  
Satoshi Serada ◽  
Tetsuji Naka ◽  
...  

Abstract Abstract 2168 To identify molecular targets in leukemia stem cells (LSCs), this study compared the protein expression profile of freshly isolated LSCs (CD34+/CD38- compartment) with that of non-LSC (CD34+/CD38+ compartment) counterparts from individuals with acute myelogenous leukemia (AML) using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 98 proteins were overexpressed, while six proteins were underexpressed in LSCs compared with their non-LSC counterparts. Proteins overexpressed in LSCs included a number of proteins involved in DNA repair, cell cycle arrest, gland differentiation, anti-apoptosis, adhesion, and drug resistance. Aberrant expression of CD82, a family of adhesion molecules, in LSCs was noted in additional clinical samples (n=6) by flow cytometry. In addition, we found that imatinib-resistant chronic eosinophilic leukemi EOL-1R cells expressed a greater amount of CD82 and remained in a dormant state compared to the parental EOL-1 cells. Interestingly, down-regulation of CD82 in EOL-1R cells by a small interfering RNA stimulated their migration capacity, as assessed by the transwell assay. These observations suggested that the aberrant expression of CD82 probably played a role in adhesion of hematopoietic cells to bone marrow microenvironment. Targeting CD82 could detach LSCs from bone marrow niche and sensitized these cells to anti-leukemia agents. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 24 (4) ◽  
pp. 450-462 ◽  
Author(s):  
Bin Zhang ◽  
Le Xuan Truong Nguyen ◽  
Ling Li ◽  
Dandan Zhao ◽  
Bijender Kumar ◽  
...  

2016 ◽  
Vol 13 (2) ◽  
pp. 248-259 ◽  
Author(s):  
Hong-Sheng Zhou ◽  
Hong-Sheng Zhou ◽  
Bing Z. Carter ◽  
Michael Andreeff ◽  
Bing Z. Carter ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-35-SCI-35
Author(s):  
Michael L. Cleary

Abstract Abstract SCI-35 Leukemia stem cells (LSCs) are responsible for sustaining and propagating malignant disease and, therefore, are promising targets for therapy. The current paradigm for LSC frequency, maturation and hierarchical organization is primarily based on transplantation studies in xenograft mouse models. To circumvent potential limitations of this experimental approach, investigators have recently employed syngeneic mouse models to study LSCs. In a mouse model of AML initiated by MLL oncogenes, which are associated with the FAB-M4 or M5 subtypes of human AML, LSCs are remarkably frequent, accounting for up to one-quarter of malignant myeloid cells at late-stage disease. Even in this syngeneic setting, however, transplant assays alone markedly underestimate LSC frequency due to poor engraftment efficiency. LSCs are organized in a phenotypic and functional hierarchy, and express myeloid lineage-specific antigens, placing them downstream of the known hematopoietic progenitor compartments. Thus, LSCs in this model are not synonymous with normal upstream progenitors that are targeted for leukemia initiation, but rather constitute myeloid lineage cells that have acquired an aberrant self-renewal program as well as other biologic features of hematopoietic stem cells. Gene expression profiling confirms the downstream myeloid character of LSCs in this model, and further demonstrates the aberrant expression of a stem cell associated transcriptional subprogram. However, LSC maintenance in the self-renewing compartment of AML employs a global transcriptional program more akin to embryonic rather than adult stem cells. Expression of LSC maintenance program genes is enriched in poor prognosis human malignancies, suggesting that the frequency of aberrantly self-renewing progenitor-like cancer stem cells may be linked to prognosis in human cancer. Consistent with this possibility, LSC frequencies in different syngeneic models of Hox-associated AML can vary over three orders of magnitude, depending on the particular initiating oncogene and expression levels of Hox pathway co-regulators, and correlate with leukemia biology. Studies in a human cord blood cell transduction/transplantation model of AML further support the downstream character of MLL LSCs. These findings prompt a revision of the current paradigm that AML leukemia stem cells are always rare and solely located within the most immature bone marrow progenitor compartments. The fact that LSCs can be more analogous to precursors and employ ESC-like genetic programs for their maintenance, may allow for their selective therapeutic targeting that spares HSCs required for hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3211-3211
Author(s):  
Ioanna Triviai ◽  
Thomas Stuebig ◽  
Anita Badbaran ◽  
Silke Zeschke ◽  
Victoria Panagiota ◽  
...  

Abstract Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by aberrant myeloid differentiation, associated with disruption of the bone marrow niche with subsequent fibrosis development and a high risk of leukemic transformation. The phenotypical complexity observed in PMF likely reflects the heterogeneous mutation profile of the neoplastic stem cells driving the disease. In our former work, we identified a CD133+ hematopoietic stem / progenitor cell (HSPC) population from patient peripheral blood that can drive major PMF morbidity parameters in a xenotransplantation mouse model. Mutational analysis of the JAK2 locus at the single cell level within the CD133+ population showed highly variable levels of cells with a JAK2+/+, JAK2V617F/+, or JAK2V617F/V617F genotype, indicating that clonality is unlikely driven by JAK2 mutations. In two of these patient samples, and in a third patient sample with CALR-fs* mutations, we identified a high load of missense mutations in EZH2 (45 to 95%), suggesting they may be critical for the clonal expansion of the neoplastic stem cell compartment. EZH2 mutations are found in circa 7% of PMF patients and are correlated with poor prognosis. EZH2 is a critical enzymatic subunit of the Polycomb Repressor Complex 2, which initiates gene repression of select genes through its intrinsic activity for methylating lysine-27 of histone H3 (H3K27). To date, the exact contribution of EZH2 mutations to PMF evolution or AML transition has not been clarified. CD133+ HSPC carrying EZH2 mutations either with JAK2 or CALR mutations were transplanted into immunodeficient NOD-scid-gamma (NSG) mice. Mice engrafted with patient samples carrying either EZH2-Y633C and JAK2-V617F or EZH2-Y733* and CALR-fs* mutations showed a strikingly similar phenotype, including high human cell engraftment (10-20%), skewed myelopoiesis, dysplastic human megakaryocytes, splenomegaly, anemia, and fibrosis in either the BM or spleen. In the case of xenotransplanted mice receiving CD133+ cells with a low JAK2 burden and EZH2-D265H mutations, we observed the highest engraftment in our mouse model (62-95%) and in one case AML transition with >50% CD133+ human blasts in murine bone marrow. Notably, AML arose from a CD133+ EZH2D265H/+ cell that lacked JAK2V617Fmutation. We thus conclude that EZH2 mutations confer to CD133+ neoplastic stem cells a predisposition to clonal aberrant hematopoiesis; whereas acquisition of JAK2V617F or CALR mutations likely leads to the observed myeloproliferation and disruption of megakaryocytic and erythroid regulation . Moreover, our results demonstrate that epigenetic mutations (like EZH2D265) and not JAK2V617F are critical for AML transition. Our data underscore the importance of post-transcriptional modifiers of histones in altering the epigenetic landscape of neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 194-194 ◽  
Author(s):  
Su Chu ◽  
Allen Lin ◽  
Tinisha McDonald ◽  
David S. Snyder ◽  
Stephen J. Forman ◽  
...  

Abstract Imatinib mesylate (IM) treatment results in marked reduction in burden of leukemia cells in chronic myelogenous leukemia (CML) patients, as indicated by achievement of complete cytogenetic remission and major reduction in Bcr-Abl transcript levels on Q-PCR analysis. However patients treated with IM alone without prior interferon treatment appear to invariably relapse on discontinuation of IM treatment. In addition we and others have shown that residual Bcr-Abl+ progenitors persist in IM-treated CML patients following achievement of CCR. These observations suggest that despite its remarkable activity in CML, IM fails to eliminate all malignant stem and progenitor cells in CML patients. However our previous studies were conducted on patients within the first year or two of IM treatment, whereas recent studies have indicated that Bcr-Abl levels continue to decline on Q-PCR analysis with continued IM treatment. This together with the decreasing rate of disease relapse observed after 3 years of IM treatment raises the possibility that prolonged IM treatment may cause depletion of residual CML stem cells. In this study we investigated whether prolonged IM treatment was associated with a reduction in Bcr- Abl+ stem and progenitor cells. We evaluated 14 CML patients followed at our center who were in CCR, had been treated with IM for at least 4 years, and from whom multiple cryopreserved bone marrow samples were available for study. Bone marrow mononuclear cells (MNC) were thawed, CD34+ cells were selected by immunomagnetic columns, and CD34+CD38+ (38+) committed progenitors and CD34+CD38− (38−) stem/primitive progenitor cells were isolated by flow cytometry sorting. Q-PCR analysis of Bcr-Abl and Bcr transcript levels was performed on RNA isolated from MNC, 38+ and 38− cells and Bcr-Abl levels were reported as the ratio of Bcr-Abl to Bcr. Bcr-Abl levels in MNC were 0.010±0.005, 0.011± 0.005 and 0.013±0.005 at 3, 4 and 5 years. We observed that Bcr-Abl levels were higher in both 38+ and 38− cells in comparison with levels in MNC. A gradual decline in Bcr-Abl levels in 38+ cells was seen (0.285±0.185 at 3 years, 0.121±0.056 at 4 years, and 0.071±0.028 at 5 years). In contrast high Bcr-Abl levels were maintained in the 38− fraction despite continued IM treatment (0.162±0.086 at 3 years, 0.116±0.041 at 4 years, and 0.361±0.107 at 5 years). In contrast to IM-treated patients, Bcr-Abl transcripts were not detected in MNC and CD34+ cells from BM of CML patients who had received allogeneic hematopoietic cell transplants (n=5). To further investigate whether malignant stem cells persisted after prolonged IM treatment, MNC from 5 of the patients described above were transplanted by tail vein injection into sublethally irradiated NOD/SCID-IL2Rγ-chain knockout (NSG) mice. High levels of human cell engraftment were observed 4–5 weeks after injection, and Q-PCR analysis revealed high levels of Bcr-Abl expression in engrafted cells from 4 of 5 patients, confirming the presence of Bcr-Abl+ cells with NOD/SCID mouse repopulating capacity. In conclusion, our results clearly demonstrate the persistence of Bcr-Abl+ stem cells in the BM of CML patients in prolonged remission after 5 years of IM treatment. The observed persistence of leukemia stem cells raises the concern that patients remain at risk for relapse on drug discontinuation or through acquisition of IM resistance. The assays described here may have considerable utility for evaluating and monitoring the effects of experimental treatment strategies directed against residual CML stem cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2631-2631
Author(s):  
Hongliang Zong ◽  
Siddhartha Sen ◽  
Guodong Zhang ◽  
David G Gorenstein ◽  
Xuewu Liu ◽  
...  

Abstract Abstract 2631 Most patients with acute myelogenous leukemia (AML) die from their disease. Although up to 75% of AML patients achieve remission after initial induction therapy, most of them will relapse and it has been proposed that relapse is the result of ineffective ablation of leukemia stem cells (LSCs) by chemotherapy. Elevated levels of phenotypically defined LSCs at diagnosis are predictive of minimal residual disease (MRD) which, in turn, predicts leukemic relapse, even after myeloablative stem cell transplantation. Therefore, in order to improve AML therapy, it is imperative to identify therapeutic strategies that effectively eliminate LSCs and we hypothesize that effective novel therapeutics in AML must be able to penetrate the protective environment of the BM niche. Thus, we investigated the use of nanotechnology as a “Trojan horse” to deliver anti-LSC drugs to the bone marrow niche. We have previously demonstrated that the plant derived compound parthenolide (PTL), which have sub-optimal bioavilability, can effectively ablate LSCs in vitro. We sought to encapsulate PTL in a novel multi-stage delivery vector system (MSV) comprised of two delivery carriers: (1) degradable porous silicon (pSi) and (2) nanoparticles containing drug of interest. To optimize specific delivery to the BM, we conjugated E-selectin thioaptamer ligand (ESTA-1) to the surface of the particles. First, we performed feasibility studies of the system in AML-xenotransplanted mice. In order to demonstrate the delivery of MSV nanoparticles to the BM, we encapsulated Alexa Fluor 555-conjugated scramble-siRNA as a control. Nanoparticles were injected into established primary-AML xenotransplants. We found that 19.5% of the human cells from were positive for Alexa Fluor-555, thus demonstrating effective delivery to the BM of the xenotransplanted mice. Notably, we confirmed, using a single i.v. injection of MSV-PTL nanoparticles, that active PTL was delivered to the BM, were we observed a 4-fold decrease in viable human cells compared to controls. To assess the in vivo efficacy of the MSV nanoparticles, established primary AML-xenotransplants were treated with either MSV-PTL, MSV-empty, PTL loaded micelles (third stage component only) or PBS. MSV-PTL treated mice demonstrated significantly decreased tumor burden (61.9 % human AML cells) compared to controls (75.8% PBS, 75.6% MSV-empty and 72.9 % micelle-PTL; p<0.05). To evaluate the anti-LSC activity of PTL, secondary transplants with equal numbers of human AML cells were performed. There was a 3.6 fold reduction in AML engraftment in the secondary xenotransplants for MSV-PTL treatment compared to MSV-empty controls (p<0.05), demonstrating that LSCs were targeted by MSV-PTL. Inhibition of NF-κB and activation of γH2AX, two intracellular events triggered specifically by PTL, were consistently identified in the human AML cells obtained from the BM of MSV-PTL treated mice. Also, MSV-PTL enhanced ablation of AML cells not eliminated by ara-C in vivo. Secondary transplants further confirmed that treatment with MSV-PTL after ara-C treatment resulted in a significant decrease of engraftment of human AML cells, suggesting that PTL can eradicate ara-C-resistant LSCs. Taken together, our data show that encapsulation of potent anti-LSC agents, such as PTL, into MSV effectively protects and delivers active drug to the BM of xenotransplanted mice and targets both AML blasts and LSCs. MSV-mediated drug delivery provides a novel method to deliver promising anti-LSC compounds, including those with poor bioavilability, to the BM niche, where they can act directly on LSCs. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2015 ◽  
Vol 30 (7) ◽  
pp. 1582-1586 ◽  
Author(s):  
H Zong ◽  
S Sen ◽  
G Zhang ◽  
C Mu ◽  
Z F Albayati ◽  
...  

Blood ◽  
2014 ◽  
Vol 123 (9) ◽  
pp. 1361-1371 ◽  
Author(s):  
Daniela S. Krause ◽  
Katherine Lazarides ◽  
Juliana B. Lewis ◽  
Ulrich H. von Andrian ◽  
Richard A. Van Etten

Key Points In a mouse model, BCR-ABL1+ leukemia stem cells are more dependent on selectins and their ligands for homing and engraftment than normal HSCs. Blockade of selectin-ligand interactions might prevent leukemic engraftment and relapse in autografted patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3409-3409
Author(s):  
Chiemi Nishida ◽  
Kaori Kusubata ◽  
Yoshihiko Tashiro ◽  
Ismael Gritli ◽  
Aki Sato ◽  
...  

Abstract Abstract 3409 Stem cells reside in a physical niche, a particular microenvironment. The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation, stem cell maintenance and regeneration. Various stem cell niches have been shown to be hypoxic, thereby maintaining the stem cell phenotype, e.g. for hematopoietic stem cells (HSCs) or cancer stem cells. The bone marrow (BM) niche is a rich reservoir for tissue-specific pluripotent HSCs. Proteases, such as matrix metalloproteinases (MMPs) can modulate stem cell fate due to their proteolytic or non-proteolytic functions (abilities). We have investigated the role of membrane-type1 matrix metalloproteinase (MT1-MMP), known for its role in pericellular matrix remodeling and cell migration, in hematopoiesis. MT1-MMP is highly expressed in HSCs and stromal cells. In MT1-MMP−/− mice, release of kit ligand (KitL), stromal cell derived factor-1 (SDF-1/CXCL12), erythropoietin (Epo) and interleukin-7 were impaired resulting in erythroid, myeloid and T and B lymphoid differentiation. Addition of exogenous rec. KitL and rec. SDF-1 restored hematopoiesis in vivo and in vitro. Further mechanistic studies revealed that MT1-MMP in a non-proteolytic manner activates the HIF-1 pathway, thereby inducing the transcription of the HIF-responsive genes KitL, SDF-1 and Epo. These results suggested MT1-MMP as a critical regulator of postnatal hematopoiesis, which as a modulator of the HIF pathway alters critical hematopoietic niche factors necessary for terminal differentiation and or migration. Thus, our results indicate that MT1-MMP as a key molecular link between hypoxia and the regulation of vital HSC niche factors. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document