Part II Commentary 2: Disparities and Opportunities: Plotting a New Course for Research on Spatial Visualization and Mathematics

Author(s):  
Kelly S. Mix ◽  
Susan C. Levine
1990 ◽  
Vol 83 (4) ◽  
pp. 258-262
Author(s):  
Maurice J. Burke

I nformal methods for discovering and demonstrating geometric principles are commonly used in mathematics classrooms. This article demonstrates an informal method that I have used successfully in workshops and mathematics classes for the past five years. It helps to show that spatial visualization and analogy can be useful informal tools. The article also recommends a cluster approach when studying propositions of informal geometry.


1990 ◽  
Vol 37 (6) ◽  
pp. 10-11 ◽  
Author(s):  
Grayson H. Wheatley

Areview of United States school mathematics reveals that rules, procedures, and analytic reasoning dominate the curriculum, whereas little attention is given to spatial visualization. What should be the roles of imagery and spatial visualization in school mathematics? How does spatial visualization relate to the learning of mathematics?


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amr Shawky ◽  
Ehab Elbiblawy ◽  
Guenter Maresch

Purpose This study aims to investigate the differences in spatial ability between students with a math learning disability and their normal peers. Design/methodology/approach To investigate these differences two groups, (60 students with a math learning disability) and (60 normal students) from fifth grade with a mean age (10.6 years) were administered with spatial ability test along with an IQ test. Students with a math learning disability were chosen using measures of the following: math learning disability questionnaire developed from learning disability evaluation scale – renormed second edition (LDES-R2) (McCarney and Arthaud, 2007) and the Quick Neurological Screening Test (Mutti et al., 2012), in addition to their marks in formal math tests in school. Findings Comparison between the two groups in four aspects of spatial ability resulted in obvious differences in each aspect of spatial ability (spatial relations, mental rotation, spatial visualization and spatial orientation); these differences were clear, especially in mental rotation and spatial visualization. Originality/value This paper contributes to gain more insights into the characteristics of pupils with a math learning disability, the nature of spatial abilities and its effect on a math learning disability. Moreover, the results suggest spatial ability to be an important diagnose factor to distinguish and identify students with a math learning disability, and that spatial ability is strongly relevant to math achievement. The results have significant implications for success in the science, technology, engineering and mathematics domain.


JAMA ◽  
1965 ◽  
Vol 194 (3) ◽  
pp. 269-272
Author(s):  
J. T. Apter
Keyword(s):  

2016 ◽  
Vol 75 (3) ◽  
pp. 123-132 ◽  
Author(s):  
Marie Crouzevialle ◽  
Fabrizio Butera

Abstract. Performance-approach goals (i.e., the desire to outperform others) have been found to be positive predictors of test performance, but research has also revealed that they predict surface learning strategies. The present research investigates whether the high academic performance of students who strongly adopt performance-approach goals stems from test anticipation and preparation, which most educational settings render possible since examinations are often scheduled in advance. We set up a longitudinal design for an experiment conducted in high-school classrooms within the context of two science, technology, engineering, and mathematics (STEM) disciplines, namely, physics and chemistry. First, we measured performance-approach goals. Then we asked students to take a test that had either been announced a week in advance (enabling strategic preparation) or not. The expected interaction between performance-approach goal endorsement and test anticipation was moderated by the students’ initial level: The interaction appeared only among low achievers for whom the pursuit of performance-approach goals predicted greater performance – but only when the test had been scheduled. Conversely, high achievers appeared to have adopted a regular and steady process of course content learning whatever their normative goal endorsement. This suggests that normative strivings differentially influence the study strategies of low and high achievers.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


Sign in / Sign up

Export Citation Format

Share Document