Application and Research of Blockchain Technology in P2P Network Distributed Data Storage

Author(s):  
Sun Peng
Author(s):  
D. V. Gribanov

Introduction. This article is devoted to legal regulation of digital assets turnover, utilization possibilities of distributed computing and distributed data storage systems in activities of public authorities and entities of public control. The author notes that some national and foreign scientists who study a “blockchain” technology (distributed computing and distributed data storage systems) emphasize its usefulness in different activities. Data validation procedure of digital transactions, legal regulation of creation, issuance and turnover of digital assets need further attention.Materials and methods. The research is based on common scientific (analysis, analogy, comparing) and particular methods of cognition of legal phenomena and processes (a method of interpretation of legal rules, a technical legal method, a formal legal method and a formal logical one).Results of the study. The author conducted an analysis which resulted in finding some advantages of the use of the “blockchain” technology in the sphere of public control which are as follows: a particular validation system; data that once were entered in the system of distributed data storage cannot be erased or forged; absolute transparency of succession of actions while exercising governing powers; automatic repeat of recurring actions. The need of fivefold validation of exercising governing powers is substantiated. The author stresses that the fivefold validation shall ensure complex control over exercising of powers by the civil society, the entities of public control and the Russian Federation as a federal state holding sovereignty over its territory. The author has also conducted a brief analysis of judicial decisions concerning digital transactions.Discussion and conclusion. The use of the distributed data storage system makes it easier to exercise control due to the decrease of risks of forge, replacement or termination of data. The author suggests defining digital transaction not only as some actions with digital assets, but also as actions toward modification and addition of information about legal facts with a purpose of its establishment in the systems of distributed data storage. The author suggests using the systems of distributed data storage for independent validation of information about activities of the bodies of state authority. In the author’s opinion, application of the “blockchain” technology may result not only in the increase of efficiency of public control, but also in the creation of a new form of public control – automatic control. It is concluded there is no legislation basis for regulation of legal relations concerning distributed data storage today.


Author(s):  
Perkins Joanna

This chapter explores the potential and challenges faced by blockchain technology in the context of six key activities: payment services, securities trading, securities clearing, securities settlement, custody, and the trading of derivatives. It describes each of the six key activities and the law as it currently stands, the potential for technological change, and the ways in which the applicable law and regulation might need to be amended or supplemented. It also explains blockchain as a specific application of a technology known as Distributed Ledger Technology (DLT) that relies on peer—to—peer networking, distributed data storage, and cryptography. This chapter refers to both the general technology and the specific application as DLT. It also mentions hash as the immutable cryptographic signature that records transactions in the blockchain.


2021 ◽  
Vol 295 ◽  
pp. 01048
Author(s):  
Marat Safiullin ◽  
Leonid Elshin ◽  
Alia Abdukaeva

Distributed data storage technologies are becoming an integral part of the modern economy and are beginning to have an increasing impact on the prospects and competitiveness of its development. This, in turn, predetermines the high growth rates of the blockchain technology market in the world. These dynamics will form changes not only in the IT markets, but also in the entire financial and economic systems, penetrated with information, digital decisionmaking processes. In this regard, relying on the functional capabilities of distributed data storage technologies, as well as taking into account the high dynamics of the processes of their penetration into the economic environment, it seems to be a very important and urgent task to develop methodological approaches to assess the risks and opportunities for the national economic system in the context of future changes. It is important to note, that the solution of the problem should, in order to objectify the results, rely on the methods of formalized analysis using the tools of economic and mathematical modeling. Based on this approach to the study of the academic and research problem, the work proposes an algorithm for assessing the influence of blockchain technologies on the dynamics of transformation of key development parameters of separate sectors of the economy. Methodologically, the calculations are based mainly on the construction of a cointegration model, that allows to determine the main effects and potential impact of possible changes in certain areas of economic activity as part of the penetration of blockchain technologies into the economic environment.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammed A. Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

AbstractThe diversity and sheer increase in the number of connected Internet of Things (IoT) devices have brought significant concerns associated with storing and protecting a large volume of IoT data. Storage volume requirements and computational costs are continuously rising in the conventional cloud-centric IoT structures. Besides, dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. In this paper, a layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system are proposed. It has been developed to mitigate the above-mentioned challenges by using the Hyperledger Fabric (HLF) platform for distributed ledger solutions. The need for a centralized server and a third-party auditor was eliminated by leveraging HLF peers performing transaction verifications and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata are stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Additionally, a prototype has been implemented on embedded hardware showing the feasibility of deploying the proposed solution in IoT edge computing and big data ecosystems. Finally, experiments have been conducted to evaluate the performance of the proposed scheme in terms of its throughput, latency, communication, and computation costs. The obtained results have indicated the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the Big Data ecosystem using the HLF blockchain. The experimental results show the throughput of about 600 transactions, 500 ms average response time, about 2–3% of the CPU consumption at the peer process and approximately 10–20% at the client node. The minimum latency remained below 1 s however, there is an increase in the maximum latency when the sending rate reached around 200 transactions per second (TPS).


2018 ◽  
Vol 10 (9) ◽  
pp. 3067 ◽  
Author(s):  
Jiani Wu ◽  
Nguyen Tran

The Energy Internet has become a hot topic for the integration of sustainable energies. However, as a result, there are numerous sustainable energy forms and participants, the system is extremely complex, and some key issues are difficult to overcome, such as the control and management of distributed sustainable energy forms. On the other hand, blockchain technology consists of distributed data storage, peer-to-peer transmission, a consensus mechanism, encryption algorithms, and smart contracts. Applying the technical advantages of the blockchain to the Energy Internet can solve many of the problems that hinder its development. The purpose of this paper is to review the development of blockchain and the Energy Internet, and provide some references for the possible applications of blockchain technology to the Energy Internet. Firstly, the definition and characteristics of blockchain and the Energy Internet are introduced in detail. Secondly, the compatibility of the two is analyzed. Then, several application scenarios of blockchain in the Energy Internet are put forward. Finally, the challenges that still exist when applying the current blockchain technology to the Energy Internet are analyzed.


Computers ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 142
Author(s):  
Obadah Hammoud ◽  
Ivan Tarkhanov ◽  
Artyom Kosmarski

This paper investigates the problem of distributed storage of electronic documents (both metadata and files) in decentralized blockchain-based b2b systems (DApps). The need to reduce the cost of implementing such systems and the insufficient elaboration of the issue of storing big data in DLT are considered. An approach for building such systems is proposed, which allows optimizing the size of the required storage (by using Erasure coding) and simultaneously providing secure data storage in geographically distributed systems of a company, or within a consortium of companies. The novelty of this solution is that we are the first who combine enterprise DLT with distributed file storage, in which the availability of files is controlled. The results of our experiment demonstrate that the speed of the described DApp is comparable to known b2c torrent projects, and subsequently justify the choice of Hyperledger Fabric and Ethereum Enterprise for its use. Obtained test results show that public blockchain networks are not suitable for creating such a b2b system. The proposed system solves the main challenges of distributed data storage by grouping data into clusters and managing them with a load balancer, while preventing data tempering using a blockchain network. The considered DApps storage methodology easily scales horizontally in terms of distributed file storage and can be deployed on cloud computing technologies, while minimizing the required storage space. We compare this approach with known methods of file storage in distributed systems, including central storage, torrents, IPFS, and Storj. The reliability of this approach is calculated and the result is compared to traditional solutions based on full backup.


Sign in / Sign up

Export Citation Format

Share Document