scholarly journals Computer Algebra for Real-Time Dynamics of Robots with Large Numbers of Joints

Author(s):  
Ramutis Bansevicius ◽  
Algimantas Cepulkauskas ◽  
Regina Kulvietiene ◽  
Genadijus Kulvietis
2014 ◽  
Vol 90 (24) ◽  
Author(s):  
Luis Seabra ◽  
Fabian H. L. Essler ◽  
Frank Pollmann ◽  
Imke Schneider ◽  
Thomas Veness

2017 ◽  
Vol 89 (18) ◽  
pp. 9814-9821 ◽  
Author(s):  
Naifu Jin ◽  
Maria Paraskevaidi ◽  
Kirk T. Semple ◽  
Francis L. Martin ◽  
Dayi Zhang

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Joseph Daniel Puglisi ◽  
Jin Chen ◽  
Guy Kornberg ◽  
Sean O'Leary ◽  
Alexey Petrov ◽  
...  
Keyword(s):  

2016 ◽  
Author(s):  
Greg Jensen ◽  
Fabian Muñoz ◽  
Vincent P. Ferrera

AbstractThe electrophysiological study of learning is hampered by modern procedures for estimating firing rates: Such procedures usually require large datasets, and also require that included trials be functionally identical. Unless a method can track the real-time dynamics of how firing rates evolve, learning can only be examined in the past tense. We propose a quantitative procedure, called ARRIS, that can uncover trial-by-trial firing dynamics. ARRIS provides reliable estimates of firing rates based on small samples using the reversible-jump Markov chain Monte Carlo algorithm. Using weighted interpolation, ARRIS can also provide estimates that evolve over time. As a result, both real-time estimates of changing activity, and of task-dependent tuning, can be obtained during the initial stages of learning.


2007 ◽  
Vol 82 (5) ◽  
pp. 2470-2476 ◽  
Author(s):  
Susan Wong ◽  
Ning Zhi ◽  
Claudia Filippone ◽  
Keyvan Keyvanfar ◽  
Sachiko Kajigaya ◽  
...  

ABSTRACT The pathogenic parvovirus B19 (B19V) has an extreme tropism for human erythroid progenitor cells. In vitro, only a few erythroid leukemic cell lines (JK-1 and KU812Ep6) or megakaryoblastoid cell lines (UT7/Epo and UT7/Epo-S1) with erythroid characteristics support B19V replication, but these cells are only semipermissive. By using recent advances in generating large numbers of human erythroid progenitor cells (EPCs) ex vivo from hematopoietic stem cells (HSCs), we produced a pure population of CD36+ EPCs expanded and differentiated from CD34+ HSCs and assessed the CD36+ EPCs for their permissiveness to B19V infection. Over more than 3 weeks, cells grown in serum-free medium expanded more than 800,000-fold, and 87 to 96% of the CD36+ EPCs were positive for globoside, the cellular receptor for B19V. Immunofluorescence (IF) staining showed that about 77% of the CD36+ EPCs were positive for B19V infection, while about 9% of UT7/Epo-S1 cells were B19V positive. Viral DNA detected by real-time PCR increased by more than 3 logs in CD36+ EPCs; the increase was 1 log in UT7/Epo-S1 cells. Due to the extensive permissivity of CD36+ EPCs, we significantly improved the sensitivity of detection of infectious B19V by real-time reverse transcription-PCR and IF staining 100- and 1,000-fold, respectively, which is greater than the sensitivity of UT7/Epo-S1 cell-based methods. This is the first description of an ex vivo method to produce large numbers of EPCs that are highly permissive to B19V infection and replication, offering a cellular system that mimics in vivo infection with this pathogenic human virus.


2018 ◽  
Vol 115 (28) ◽  
pp. E6516-E6525 ◽  
Author(s):  
Stephan Uphoff

Evolutionary processes are driven by diverse molecular mechanisms that act in the creation and prevention of mutations. It remains unclear how these mechanisms are regulated because limitations of existing mutation assays have precluded measuring how mutation rates vary over time in single cells. Toward this goal, I detected nascent DNA mismatches as a proxy for mutagenesis and simultaneously followed gene expression dynamics in single Escherichia coli cells using microfluidics. This general microscopy-based approach revealed the real-time dynamics of mutagenesis in response to DNA alkylation damage and antibiotic treatments. It also enabled relating the creation of DNA mismatches to the chronology of the underlying molecular processes. By avoiding population averaging, I discovered cell-to-cell variation in mutagenesis that correlated with heterogeneity in the expression of alternative responses to DNA damage. Pulses of mutagenesis are shown to arise from transient DNA repair deficiency. Constitutive expression of DNA repair pathways and induction of damage tolerance by the SOS response compensate for delays in the activation of inducible DNA repair mechanisms, together providing robustness against the toxic and mutagenic effects of DNA alkylation damage.


Sign in / Sign up

Export Citation Format

Share Document