A High Precision Prediction Method by Using Combination of ELMAN and SOM Neural Networks

Author(s):  
Jie Wang ◽  
Dongwei Yan
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1770
Author(s):  
Javier González-Enrique ◽  
Juan Jesús Ruiz-Aguilar ◽  
José Antonio Moscoso-López ◽  
Daniel Urda ◽  
Lipika Deka ◽  
...  

This study aims to produce accurate predictions of the NO2 concentrations at a specific station of a monitoring network located in the Bay of Algeciras (Spain). Artificial neural networks (ANNs) and sequence-to-sequence long short-term memory networks (LSTMs) were used to create the forecasting models. Additionally, a new prediction method was proposed combining LSTMs using a rolling window scheme with a cross-validation procedure for time series (LSTM-CVT). Two different strategies were followed regarding the input variables: using NO2 from the station or employing NO2 and other pollutants data from any station of the network plus meteorological variables. The ANN and LSTM-CVT exogenous models used lagged datasets of different window sizes. Several feature ranking methods were used to select the top lagged variables and include them in the final exogenous datasets. Prediction horizons of t + 1, t + 4 and t + 8 were employed. The exogenous variables inclusion enhanced the model’s performance, especially for t + 4 (ρ ≈ 0.68 to ρ ≈ 0.74) and t + 8 (ρ ≈ 0.59 to ρ ≈ 0.66). The proposed LSTM-CVT method delivered promising results as the best performing models per prediction horizon employed this new methodology. Additionally, per each parameter combination, it obtained lower error values than ANNs in 85% of the cases.


2020 ◽  
Vol 34 (10) ◽  
pp. 13887-13888
Author(s):  
Masahito Okuno ◽  
Takanobu Otsuka

The increasing global demand for marine products has turned attention to marine aquaculture. In marine aquaculture, appropriate environment control is important for a stable supply. The influence of seawater temperature on this environment is significant and accurate prediction is therefore required. In this paper, we propose and describe the implementation of a seawater prediction method using data acquired from real aquaculture areas and neural networks. Our evaluation experiment showed that hourly next-day prediction has an average error of about 0.2 to 0.4 ◦C and daily prediction of up to one week has an average error of about 0.2 to 0.5 ◦C. This is enough to meet actual worker need, which is within 1 ◦C error, thus confirming that our seawater prediction method is suitable for actual sites.


Sign in / Sign up

Export Citation Format

Share Document