Antimagic Valuations for the Special Class of Plane Graphs

Author(s):  
Martin Bača ◽  
Edy Tri Baskoro ◽  
Mirka Miller
Keyword(s):  
1980 ◽  
Vol 9 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Virginia Monroe ◽  
Lisa Ford
Keyword(s):  

1978 ◽  
Vol 112 (984) ◽  
pp. 415-427 ◽  
Author(s):  
Stevan J. Arnold
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Davood Afraz ◽  
Rahmatollah Lashkaripour ◽  
Mojtaba Bakherad

Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Sibyla Andreuchetti ◽  
Vinícius M. Oliveira ◽  
Toshio Fukuda

SUMMARY Many different control schemes have been proposed in the technical literature to control the special class of underactuated systems, the- so-called brachiation robots. However, most of these schemes are limited with regard to the method by which the robot executes the brachiation movement. Moreover, many of these control strategies do not take into account the energy of the system as a decision variable. To observe the behavior of the system’s, energy is very important for a better understanding of the robot dynamics while performing the motion. This paper discusses a variety of energy-based strategies to better understand how the system’s energy may influence the type of motion (under-swing or overhand) the robot should perform.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Thomas Bourton ◽  
Alessandro Pini ◽  
Elli Pomoni

Abstract Even though for generic $$ \mathcal{N} $$ N = 1 theories it is not possible to separate distinct branches of supersymmetric vacua, in this paper we study a special class of $$ \mathcal{N} $$ N = 1 SCFTs, these of Class $$ {\mathcal{S}}_k $$ S k for which it is possible to define Coulomb and Higgs branches precisely as for the $$ \mathcal{N} $$ N = 2 theories of Class $$ \mathcal{S} $$ S from which they descend. We study the BPS operators that parameterise these branches of vacua using the different limits of the superconformal index as well as the Coulomb and Higgs branch Hilbert Series. Finally, with the tools we have developed, we provide a check that six dimensional (1, 1) Little String theory can be deconstructed from a toroidal quiver in Class $$ {\mathcal{S}}_k $$ S k .


Sign in / Sign up

Export Citation Format

Share Document