A Survey on Brachiation Robots: An Energy-Based Review

Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Sibyla Andreuchetti ◽  
Vinícius M. Oliveira ◽  
Toshio Fukuda

SUMMARY Many different control schemes have been proposed in the technical literature to control the special class of underactuated systems, the- so-called brachiation robots. However, most of these schemes are limited with regard to the method by which the robot executes the brachiation movement. Moreover, many of these control strategies do not take into account the energy of the system as a decision variable. To observe the behavior of the system’s, energy is very important for a better understanding of the robot dynamics while performing the motion. This paper discusses a variety of energy-based strategies to better understand how the system’s energy may influence the type of motion (under-swing or overhand) the robot should perform.

2020 ◽  
Vol 09 (01) ◽  
pp. 23-34
Author(s):  
Xiaofeng Chai ◽  
Jian Liu ◽  
Yao Yu ◽  
Jianxiang Xi ◽  
Changyin Sun

In this paper, we study the practical fixed-time event-triggered time-varying formation tracking problem of leader-follower multi-agent systems with multi-dimensional dynamics. Fixed-time event-triggered control schemes with continuous communication and intermittent communication are developed, respectively. Continuous communication and measurement are avoided, and computation cost is reduced greatly in the latter scheme. And the settling time is to be specified regardless of initial states of agents. Meanwhile, tracking errors are adjustable as desired with expected settling time. It is demonstrated that time-varying formation tracking can be achieved under the two proposed control schemes and Zeno behavior can be excluded. Finally, numerical examples are provided to illustrate the effectiveness of the proposed control strategies.


Author(s):  
Stefano Cenci ◽  
Giulio Rosati ◽  
Damiano Zanotto ◽  
Fabio Oscari ◽  
Aldo Rossi

According to a recent report of ILO (International Labour Organization), more than two million people die or loose the working capability every year because of accidents or work-related diseases. A large portion of these accidents are related to the execution of motion and transportation tasks involving heavy duty machines. The insufficient degree of interaction between the human operator and the machine may be regarded as one of the major causes of this phenomenon. The main goal of the tele-operation system presented in this paper is to both preserving slave (machine) stability, by reducing the inputs of slave actuators when certain unsafe working conditions occur, and improving the level of interaction at master (operator) side. Different control schemes are proposed in the paper, including several combinations of master and slave control strategies. The effectiveness of the algorithms is analyzed by presenting some experimental results, based on the use of a two degrees-of-freedom force feedback input device (with one active actuator and one passive stiff joint) coupled with a simulator of a telescopic handler.


Author(s):  
Huzefa Shakir ◽  
Won-Jong Kim

In this paper, we consider the problem of designing a multiscale control for plants with conflicting time-domain performance requirements. These results follow from the conventional optimal proportional-integral (PI) control. Four different design methods are proposed: (1) a controller-switch technique which makes use of employing two different controllers designed to meet two different performances and are switched during the course of operation, (2) an integral-reset scheme, which resets the integral term in the control law when the new reference point is reached, (3) controller-switch and integral-reset schemes put together to take benefits of both of them, (4) a model-following approach that uses a dynamic reference model without increasing the overall dimension of the system. The objective of the last scheme is to make the output of the plant track the output of the model as closely as possible. Stability analyses and a comparison between the performances of these methods are given. All these methods give better performances as compared with conventional control schemes. Block diagrams are given and step responses are obtained to demonstrate the proposed methods. A six degrees-of-freedom (DOFs) magnetically levitated (maglev) stage with a second-order pure-mass model has been used to demonstrate the capabilities of the aforementioned control strategies. These strategies are not plant-specific and may be generalized to any higher-order plant.


Author(s):  
Kai Borgeest ◽  
Peter Josef Schneider

For the cooling system of a mobile machine with m control variables and with n=m correction variables different control strategies have been investigated in order to minimize power to save energy and to reduce fan noise with sufficient cooling. The plant is nonlinear and not identified. Three different kinds of controllers have been investigated in several variations, i.e. fuzzy control, PI(D) and model predictive control (MPC). 14 different criteria have been used for evaluation. In many respects a linear controller with fuzzy prediction proved best, in particular the prediction model can handle nonlinear properties of the plant. A problem of advanced control schemes with unidentified plants is the difficulty to prove stability.


2020 ◽  
Vol 10 (22) ◽  
pp. 8292
Author(s):  
Przemyslaw Herman

This work is devoted to preliminary numerical tests of selected control strategies of underwater vehicles in the absence of a force applied to the side. The aim was to test the effectiveness of control algorithms for underwater vehicle models considered to be underactuated. Initially, the testing algorithm is used to obtain some information about the dynamics model. Several well-known control schemes for two underwater vehicles for two desired trajectories were selected and tested. The simulations made for the planar 3-DOF model of two underwater vehicles show the performance that can be achieved with each control algorithm according to the assumptions made.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Zhen Yang ◽  
Shumin Fei ◽  
Fang Wang ◽  
Jiaguo Lv ◽  
Xishang Dong

Two adaptive switching control strategies are proposed for the trajectory tracking problem of robotic manipulator in this paper. The first scheme is designed for the supremum of the bounded disturbance for robot manipulator being known; while the supremum is not known, the second scheme is proposed. Each proposed scheme consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theorem, it is shown that two new schemes can guarantee tracking performance of the robotic manipulator and be adapted to the alternating unknown loads. Simulations for two-link robotic manipulator are carried out and show that the two schemes can avoid the overlarge input torque, and the feasibility and validity of the proposed control schemes are proved.


2019 ◽  
pp. 0309524X1986842
Author(s):  
A Jeya Veronica ◽  
N Senthil Kumar

The electric power generation over the past decade has moved from conventional fossil fuel-fired thermal power plants to tiny-scale system generating power through distributed generation units. A group of such distributed generation units and loads are termed as microgrids. Microgrids can be located near the load centers to supply the load without any loss of power. Frequency regulation in a microgrid operating in autonomous mode is critical because of the intermittent nature of the renewable sources employed. To maintain the frequency regulation within a tolerance limit in a microgrid, proper control schemes have to be adopted in order to increase or decrease the real power generation. Hence, this article explores and presents a critical review of different types of control strategies employed for frequency regulation in microgrids.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 10068-10080 ◽  
Author(s):  
Sami Ud Din ◽  
Qudrat Khan ◽  
Fazal-Ur Rehman ◽  
Rini Akmeliawanti

Author(s):  
W Franco ◽  
M Sen ◽  
K T Yang ◽  
R L McClain

A dynamic thermal-hydraulic analysis of strategies used for the control of hydronic piping and heat exchanger networks is carried out. Three common temperature control methods are analysed and compared using a mathematical model. For this purpose a general thermal network with a primary loop, a secondary loop and a bypass that has the three control systems as special cases is proposed. The primary loop includes a chiller, while the secondary has a water-air cooling coil which serves as a thermal load. Integral controllers are used to vary the valve settings to control the air temperature leaving the cooling coil. The system responses for each of the three control schemes as a function of the thermal load are then compared to assess their relative merits using the temperature drop in the chiller as a criterion.


2019 ◽  
Vol 9 (1) ◽  
pp. 183 ◽  
Author(s):  
Sungyoon Song ◽  
Minhan Yoon ◽  
Gilsoo Jang

In this paper, the generator angle stability of several active power control schemes of a voltage-source converter (VSC)-based high-voltage DC (HVDC) is evaluated for two interconnected AC systems. Excluding frequency control, there has been no detailed analysis of interconnected grids depending upon the converter power control, so six different types of active power control of the VSC-HVDC are defined and analyzed in this paper. For each TSO (transmission system operator), the applicable schemes of two kinds of step control and four kinds of ramp-rate control with a droop characteristic are included in this research. Furthermore, in order to effectively evaluate the angle stability, the Generators-VSC Interaction Factor (GVIF) index is newly implemented to distinguish the participating generators (PGs) group which reacts to the converter power change. As a result, the transient stabilities of the two power systems are evaluated and the suitable active power control strategies are determined for two TSOs. Simulation studies are performed using the PSS®E program to analyze the power system transient stability and various active power control schemes of the VSC-HVDC. The results provide useful information indicating that the ramp-rate control shows a more stable characteristic than the step-control for interconnected grids; thus, a converter having a certain ramp-rate slope similar to that of the other generator shows more stable results in several cases.


Sign in / Sign up

Export Citation Format

Share Document