A Navigation System for Automated Loaders in Underground Mines

Author(s):  
Johan Larsson ◽  
Mathias Broxvall ◽  
Alessandro Saffiotti
2021 ◽  
Vol 11 (14) ◽  
pp. 6547
Author(s):  
Mauricio Mascaró ◽  
Isao Parra-Tsunekawa ◽  
Carlos Tampier ◽  
Javier Ruiz-del-Solar

Mobile robots are no longer used exclusively in research laboratories and indoor controlled environments, but are now also used in dynamic industrial environments, including outdoor sites. Mining is one industry where robots and autonomous vehicles are increasingly used to increase the safety of the workers, as well as to augment the productivity, efficiency, and predictability of the processes. Since autonomous vehicles navigate inside tunnels in underground mines, this kind of navigation has different precision requirements than navigating in an open environment. When driving inside tunnels, it is not relevant to have accurate self-localization, but it is necessary for autonomous vehicles to be able to move safely through the tunnel and to make appropriate decisions at its intersections and access points in the tunnel. To address these needs, a topological navigation system for mining vehicles operating in tunnels is proposed and validated in this paper. This system was specially designed to be used by Load-Haul-Dump (LHD) vehicles, also known as scoop trams, operating in underground mines. In addition, a localization system, specifically designed to be used with the topological navigation system and its associated topological map, is also proposed. The proposed topological navigation and localization systems were validated using a commercial LHD during several months at a copper sub-level stoping mine located in the Coquimbo Region in the northern part of Chile. An important aspect to be addressed when working with heavy-duty machinery, such as LHDs, is the way in which automation systems are developed and tested. For this reason, the development and testing methodology, which includes the use of simulators, scale-models of LHDs, validation, and testing using a commercial LHD in test-fields, and its final validation in a mine, are described.


2021 ◽  
pp. 92-96
Author(s):  
L. Yu. Levin ◽  
D. S. Kormshchikov ◽  
E. G. Kuzminykh ◽  
A. M. Machеret

Mining operations at potash mines are carried out by heading machines. Setting of a direction and control of the movement of the machines is carried out by the mine surveyor and by the machine operator in the manual mode. The lack of automation of this process during production leads to large labor costs of the mine surveying service, while the experience of the machine operator affects accuracy of maintenance of a specified course. Currently, there are no ready-made technical products for automating the process of setting the course and controlling the movement of heading machines. This paper deals with the implementation of the navigation system for heading machines in the underground mines of Uralkali company. At the mines of Uralkali, the requirements for the accuracy of such a system are dictated by the requirements for the accuracy of mine surveying support for underground mining operations in driving new roadways. Possible ways of constructing navigation systems and the problems of their application are considered. The analysis of the existing methods shows that the most promising option for navigation of heading machines in underground mine openings are the systems based on the principles of inertial navigation. To use such systems in underground mines and to ensure the required accuracy, the technical requirements for the systems are formulated. It is shown that modern strapdown inertial navigation systems satisfy the required accuracy. On their basis, a prototype of the heading machine navigation system was developed, and its ground tests were carried out. The achieved accuracy of the system makes it possible to proceed to testing of a real heading machine in a mine. The study was supported by the Russian Science Foundation, Project No. 19-77-30008.


2012 ◽  
Vol 73 (S 02) ◽  
Author(s):  
L. Volpi ◽  
A. Pistochini ◽  
M. Turri-Zanoni ◽  
F. Meloni ◽  
M. Bignami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document