As a scientist, the Long-Term Ecological Research (LTER) program has been on my mind for more than three decades. As an educator, I have served in the classroom for 41 years. The merger of the physical and the ecological sciences was at the core of my teaching philosophy. As a science communicator, I informed the general public on issues of climate and climate change. As a collaborator, I found that understanding strengths and weaknesses in collaborative partnerships best ensures success. As a science leader, I served at the National Science Foundation (NSF) as the Director of the Division of Environmental Biology (DEB), established the Schoolyard LTER Program, and launched the National Ecological Observatory Network (NEON). My disciplinary background includes formal graduate education at the University of Wisconsin in meteorology, climatology, and paleoclimatology, as well as in oceanography and biology (mycology, botany, zoology, and genecology). As a postdoctoral fellow, my scientific identity was on track to culminate as a paleoclimatologist. As an assistant and associate professor, my identity morphed to include coastal geomorphology (Hayden et al. 1995). Finally, my experiences in the LTER program have vectored my career toward the interactions of climate and vegetation (Hayden 1998). My affiliation is with the Virginia Coast Reserve (VCR) site in the LTER program (1986–2014). As one of the founding principal investigators of the VCR site, I have served in subsequent renewals as its principal or co-principal investigator. Our site-based research plan focused on the Virginia Coast Reserve on Virginia’s eastern shore with a focus on the dynamics of the chain of 14 barrier islands, bounded by the entrance to the Chesapeake Bay to the south and Assateague Barrier Island to the north. This peninsula is 100 km in length by 20 km in width. Only the islands fronting the Mississippi delta are more dynamic in both the temporal and spatial domains. Prior to joining the LTER program, my research was hemispheric to regional in scope, and it focused on the environmental dynamics of the Atlantic Coast from Florida to Cape Cod at 50-m intervals (Fenster and Hayden 2007).