Advances in the Application of Machine Learning Techniques in Drug Discovery, Design and Development

Author(s):  
S. J. Barrett ◽  
W. B. Langdon
2019 ◽  
Vol 20 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Natalie Stephenson ◽  
Emily Shane ◽  
Jessica Chase ◽  
Jason Rowland ◽  
David Ries ◽  
...  

Background:Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.Methods:We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.Results:Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.Conclusion:The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.


Author(s):  
Shuxing Zhang

Machine learning techniques have been widely used in drug discovery and development, particularly in the areas of cheminformatics, bioinformatics and other types of pharmaceutical research. It has been demonstrated they are suitable for large high dimensional data, and the models built with these methods can be used for robust external predictions. However, various problems and challenges still exist, and new approaches are in great need. In this Chapter, the authors will review the current development of machine learning techniques, and especially focus on several machine learning techniques they developed as well as their application to model building, lead discovery via virtual screening, integration with molecular docking, and prediction of off-target properties. The authors will suggest some potential different avenues to unify different disciplines, such as cheminformatics, bioinformatics and systems biology, for the purpose of developing integrated in silico drug discovery and development approaches.


2021 ◽  
Author(s):  
Ruby Srivastava

Computational methods play a key role in the design of therapeutically important molecules for modern drug development. With these “in silico” approaches, machines are learning and offering solutions to some of the most complex drug related problems and has well positioned them as a next frontier for potential breakthrough in drug discovery. Machine learning (ML) methods are used to predict compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties to evaluate the drugs and their various applications. Modern artificial intelligence (AI) has the capacity to significantly enhance the role of computational methodology in drug discovery. Use of AI in drug discovery and development, drug repurposing, improving pharmaceutical productivity, and clinical trials will certainly reduce the human workload as well as achieving targets in a short period of time. This chapter elaborates the crosstalk between the machine learning techniques, computational tools and the future of AI in the pharmaceutical industry.


2012 ◽  
pp. 1460-1482
Author(s):  
Shuxing Zhang

Machine learning techniques have been widely used in drug discovery and development, particularly in the areas of cheminformatics, bioinformatics and other types of pharmaceutical research. It has been demonstrated they are suitable for large high dimensional data, and the models built with these methods can be used for robust external predictions. However, various problems and challenges still exist, and new approaches are in great need. In this Chapter, the authors will review the current development of machine learning techniques, and especially focus on several machine learning techniques they developed as well as their application to model building, lead discovery via virtual screening, integration with molecular docking, and prediction of off-target properties. The authors will suggest some potential different avenues to unify different disciplines, such as cheminformatics, bioinformatics and systems biology, for the purpose of developing integrated in silico drug discovery and development approaches.


2018 ◽  
Vol 20 (5) ◽  
pp. 1878-1912 ◽  
Author(s):  
Ahmet Sureyya Rifaioglu ◽  
Heval Atas ◽  
Maria Jesus Martin ◽  
Rengul Cetin-Atalay ◽  
Volkan Atalay ◽  
...  

Abstract The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as ‘virtual screening’ (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Sign in / Sign up

Export Citation Format

Share Document