scholarly journals Transformation of Drug Discovery towards Artificial Intelligence: An in Silico Approach

2021 ◽  
Author(s):  
Ruby Srivastava

Computational methods play a key role in the design of therapeutically important molecules for modern drug development. With these “in silico” approaches, machines are learning and offering solutions to some of the most complex drug related problems and has well positioned them as a next frontier for potential breakthrough in drug discovery. Machine learning (ML) methods are used to predict compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties to evaluate the drugs and their various applications. Modern artificial intelligence (AI) has the capacity to significantly enhance the role of computational methodology in drug discovery. Use of AI in drug discovery and development, drug repurposing, improving pharmaceutical productivity, and clinical trials will certainly reduce the human workload as well as achieving targets in a short period of time. This chapter elaborates the crosstalk between the machine learning techniques, computational tools and the future of AI in the pharmaceutical industry.

Author(s):  
Nilofar Mulla, Dr. Naveenkumar Jayakumar

This study provides information about the use of artificial intelligence (AI) and machine learning (ML) techniques in the field of software testing. The use of AI in software testing is still in its initial stages. Also the automation level is lesser compared to more evolved areas of work.AI and ML can be used to help reduce tediousness and automate tasks in software testing. Testing can be made more efficient and smarter with the help of AI. Researchers recognize potential of AI to bridge the gap between human and machine driven testing capabilities. There are still number of challenges to fully utilize AI and ML techniques in testing but it will definitely enhance the entire testing process and skills of testers and will contribute in business growth. Machine learning research is a subset of overall AI research. The life-cycle of software is increasingly shortening and becoming more complicated. There is a struggle in software development between the competing pressures of developing software and meeting deadlines. AI-powered automated testing makes conducting full test suites in a timely manner on every change. In this article a detailed overview about the various applications of AI in software testing have been demonstrated. Also the implementation of machine learning in software testing has been discussed in detail and use of different machine learning techniques has been explained as well.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Author(s):  
Navjot Singh ◽  
Amarjot Kaur

The objective of the present chapter is to highlight applications of machine learning and artificial intelligence (AI) in clinical diagnosis of neurodevelopmental disorders. The proposed approach aims at recognizing behavioral traits and other cognitive aspects. The availability of numerous data and high processing power, such as graphic processing units (GPUs) or cloud computing, enabled the study of micro-patterns hundreds of times faster compared to manual analysis. AI, being a new technological breakthrough, enables study of human behavior patterns, which are hidden in millions of micro-patterns originating from human actions, reactions, and gestures. The chapter will also focus on the challenges in existing machine learning techniques and the best possible solution addressing those problems. In the future, more AI-based expert systems can enhance the accuracy of the diagnosis and prognosis process.


Author(s):  
Deepti Rani ◽  
Anju Sangwan ◽  
Anupma Sangwan ◽  
Tajinder Singh

With the enormous growth of sensor networks, information seeking from such networks has become an invaluable source of knowledge for various organizations to enhance the comprehension of people interests. Not only wireless sensor networks (WSNs) but its various classes also remain the hot topics of research. In this chapter, the primary focus is to understand the concept of sensor network in underwater scenario. Various mechanisms are used to recognize the activities underwater using sensor which examines the real-time events. With these features, a few challenges are also associated with sensor networks, which are addressed here. Machine learning (ML) techniques are the perfect key of success to resolve such issues due to their feasibility and adaption in complex problem environment. Therefore, various ML techniques have been explained to enhance the operational performance of WSNs, especially in underwater WSNs (UWSNs). The main objective of this chapter is to understand the concepts of UWSNs and role of ML to address the performance issues of UWSNs.


Sign in / Sign up

Export Citation Format

Share Document