Electron Optics of Real Cylindrical Deflectors Loaded with High Current

Author(s):  
Harald Ibach
Keyword(s):  
2010 ◽  
Vol 59 (3) ◽  
pp. 1721
Author(s):  
Sun Fu-Yu ◽  
Wu Zhen-Hua ◽  
Zhang Kai-Chun

Author(s):  
M. Mankos ◽  
K. Y. Lee ◽  
L. Muray ◽  
J. Spallas ◽  
Y. Hsu ◽  
...  
Keyword(s):  

Author(s):  
Godfrey C. Hoskins

The first serious electron microscooic studies of chromosomes accompanied by pictures were by I. Elvers in 1941 and 1943. His prodigious study, from the manufacture of micronets to the development of procedures for interpreting electron micrographs has gone all but unnoticed. The application of todays sophisticated equipment confirms many of the findings he gleaned from interpretation of images distorted by the electron optics of that time. In his figure 18 he notes periodic arrangement of pepsin sensitive “prickles” now called secondary fibers. In his figure 66 precise regularity of arrangement of these fibers can be seen. In his figure 22 he reproduces Siegbahn's first stereoscopic electron micrograph of chromosomes.The two stereoscopic pairs of electron micrographs of a human chromosome presented here were taken with a metallurgical stage on a Phillips EM200. These views are interpreted as providing photographic evidence that primary fibers (1°F) about 1,200Å thick are surrounded by secondary fibers (2°F) arranged in regular intervals of about 2,800Å in this metanhase human chromosome. At the telomere the primary fibers bend back on themselves and entwine through the center of each of each chromatid. The secondary fibers are seen to continue to surround primary fibers at telomeres. Thus at telomeres, secondary fibers present a surface not unlike that of the side of the chromosome, and no more susceptible to the addition of broken elements from other chromosomes.


Author(s):  
R. Hutchings ◽  
I.P. Jones ◽  
M.H. Loretto ◽  
R.E. Smallman

There is increasing interest in X-ray microanalysis of thin specimens and the present paper attempts to define some of the factors which govern the spatial resolution of this type of microanalysis. One of these factors is the spreading of the electron probe as it is transmitted through the specimen. There will always be some beam-spreading with small electron probes, because of the inevitable beam divergence associated with small, high current probes; a lower limit to the spatial resolution is thus 2αst where 2αs is the beam divergence and t the specimen thickness.In addition there will of course be beam spreading caused by elastic and inelastic interaction between the electron beam and the specimen. The angle through which electrons are scattered by the various scattering processes can vary from zero to 180° and it is clearly a very complex calculation to determine the effective size of the beam as it propagates through the specimen.


Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.


Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


Sign in / Sign up

Export Citation Format

Share Document