Prosthetic Hand for the Brain-computer Interface System

Author(s):  
Shuhaida Yahud ◽  
N. A. Abu Osman
2020 ◽  
pp. 1-14
Author(s):  
Xiangmin Lun ◽  
Zhenglin Yu ◽  
Fang Wang ◽  
Tao Chen ◽  
Yimin Hou

In order to develop an efficient brain-computer interface system, the brain activity measured by electroencephalography needs to be accurately decoded. In this paper, a motor imagery classification approach is proposed, combining virtual electrodes on the cortex layer with a convolutional neural network; this can effectively improve the decoding performance of the brain-computer interface system. A three layer (cortex, skull, and scalp) head volume conduction model was established by using the symmetric boundary element method to map the scalp signal to the cortex area. Nine pairs of virtual electrodes were created on the cortex layer, and the features of the time and frequency sequence from the virtual electrodes were extracted by performing time-frequency analysis. Finally, the convolutional neural network was used to classify motor imagery tasks. The results show that the proposed approach is convergent in both the training model and the test model. Based on the Physionet motor imagery database, the averaged accuracy can reach 98.32% for a single subject, while the averaged values of accuracy, Kappa, precision, recall, and F1-score on the group-wise are 96.23%, 94.83%, 96.21%, 96.13%, and 96.14%, respectively. Based on the High Gamma database, the averaged accuracy has achieved 96.37% and 91.21% at the subject and group levels, respectively. Moreover, this approach is superior to those of other studies on the same database, which suggests robustness and adaptability to individual variability.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2002 ◽  
Vol 41 (04) ◽  
pp. 337-341 ◽  
Author(s):  
F. Cincotti ◽  
D. Mattia ◽  
C. Babiloni ◽  
F. Carducci ◽  
L. Bianchi ◽  
...  

Summary Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes. Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used. Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes. Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.


Sign in / Sign up

Export Citation Format

Share Document