Abstract
Purpose
The aim of this study is to investigate an implementation method and the results of a voxel-based self-adaptive prescription dose optimization algorithm for intensity-modulated radiotherapy.
Materials and methods
The self-adaptive prescription dose optimization algorithm used a quadratic objective function, and the optimization engine was implemented using the molecular dynamics. In the iterative optimization process, the optimization prescription dose changed with the relationship between the initial prescription dose and the calculated dose. If the calculated dose satisfied the initial prescription dose, the optimization prescription dose was equal to the calculated dose; otherwise, the optimization prescription dose was equal to the initial prescription dose. We assessed the performance of the self-adaptive prescription dose optimization algorithm with two cases: a mock head and neck case and a breast case. Isodose lines, dose–volume histogram, and dosimetric parameters were compared between the conventional molecular dynamics optimization algorithm and the self-adaptive prescription dose optimization algorithm.
Results
The self-adaptive prescription dose optimization algorithm produces the different optimization results compared with the conventional molecular dynamics optimization algorithm. For the mock head and neck case, the planning target volume (PTV) dose uniformity improves, and the dose to organs at risk is reduced, ranging from 1 to 4%. For the breast case, the use of self-adaptive prescription dose optimization algorithm also leads to improvements in the dose distribution, with the dose to organs at risk almost unchanged.
Conclusion
The self-adaptive prescription dose optimization algorithm can generate an ideal clinical plan more effectively, and it could be integrated into a treatment planning system after more cases are studied.