Effect of Light Scattering Simulation in the Eye on Different Color Stimuli Perception

Author(s):  
Gatis Ikaunieks ◽  
M. Ozolinsh
Author(s):  
John R. D. Hervey ◽  
Paolo Bombelli ◽  
David J. Lea-Smith ◽  
Alan K. Hulme ◽  
Nathan R. Hulme ◽  
...  

AbstractAbsorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml−1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1–4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.


2006 ◽  
Vol 23 (3-4) ◽  
pp. 597-601 ◽  
Author(s):  
MARIS OZOLINSH ◽  
MICHÉLE COLOMB ◽  
GATIS IKAUNIEKS ◽  
VARIS KARITANS

Perception of different color contrast stimuli was studied in the presence of light scattering: in a fog chamber in Clermont-Ferrand and in laboratory conditions where light scattering of similar levels was obtained, using different light scattering eye occluders. Blue (shortest wavelength) light is scattered in fog to the greatest extent, causing deterioration of vision quality especially for the monochromatic blue stimuli. However, for the color stimuli presented on a white background, visual acuity in fog for blue Landolt-C optotypes was higher than for red and green optotypes on the white background. The luminance of color Landolt-C optotypes presented on a LCD screen was chosen corresponding to the blue, green, and red color contributions in achromatic white stimuli (computer digital R, G, or B values for chromatic stimuli equal to RGB values in the achromatic white background) that results in the greatest luminance contrast for the white–blue stimuli, thus advancing the visual acuity for the white-blue stimuli. Besides such blue stimuli on the white background are displayed with a uniform, spatially unmodulated distribution of the screen blue phosphor emission over the entire area of the screen including the stimulus C optotype area. It follows that scattering, which has the greatest effect on the blue component of screen luminance, has the least effect on the perception of white–blue stimuli.


2002 ◽  
Vol 22 (6) ◽  
pp. 482-490 ◽  
Author(s):  
H. L. Chan ◽  
A. W. Siu ◽  
M. K. Yap ◽  
B. Brown

1960 ◽  
Vol 82 (18) ◽  
pp. 4790-4792 ◽  
Author(s):  
S. J. Leach ◽  
H. A. Scheraga

1972 ◽  
Vol 15 (11) ◽  
pp. 1691-1692
Author(s):  
T. P. Myasnikov ◽  
R. Ya. Evseeva

1972 ◽  
Vol 7 (7) ◽  
pp. 845-850 ◽  
Author(s):  
M. S. Soskin ◽  
E. N. Sal'kova ◽  
P. P. Pogoretskii

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zafer Özomay ◽  
Çağla Koşak Söz ◽  
Sinan Sönmez

Abstract In this study the prints were made on paper substrates, which were thought as map substrate alternatives, with 3 different surface properties at 1200 dpi by using the electrophotographic printing system. Color and gloss values of the samples were determined both before and after exposure to light for a period of 42 hours to determine the light fastness of the substrate and the print on it. The studies revealed that after the light fastness tests (i) the width of the color universe of the papers with matte surfaces is more than that of the papers with glossy surfaces, (ii) the loss of brightness of woodfree paper is higher than that of the other paper samples and (iii) the print chroma values obtained in woodfree paper is lower than those of the coated surfaces. Moreover, (iv) the delta E 00 {E_{00}} measurements revealed that all paper samples experienced different color losses in different colors, and the most significant differences in these color losses were in magenta and black.


2013 ◽  
Vol 30 (12) ◽  
pp. 2585 ◽  
Author(s):  
Ismael Kelly-Pérez ◽  
Neil C. Bruce ◽  
Luis R. Berriel-Valdos ◽  
Annette Werner ◽  
José A. Delgado Atencio

Sign in / Sign up

Export Citation Format

Share Document