absorbance spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 43)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 73 (09) ◽  
pp. 33-35
Author(s):  
Anup T. Hunnur

Fluid samples collected using either wireline or logging-while-drilling (LWD) formation-testing technology for reservoir fluid characterization have long been accepted as the most representative of reservoir fluid. This, though, comes with a caveat that the collected sample is clean and devoid of any mud-filtrate contamination. With both techniques performed soon after drilling a well, there is always a risk of contaminating the collected fluid with mud filtrate. Toward the goal of reducing this risk, since the early 2000s, technologies have been brought forth to help identify the fluid down hole. There have been multiple developments with sensors for absorbance spectroscopy, fluorescence, fluid resistivity, fluid refractive index, and so on. Each sensor development was targeted toward a specific fluid interaction with the mud filtrate, thereby helping to differentiate the reservoir fluid from the mud filtrate. Downhole sampling conditions can be classified into two broad groups: one case where the reservoir fluid is miscible with the mud filtrate and the other where the reservoir fluid is not miscible with the mud filtrate. The immiscible cases are generally straightforward, since sensors such as absorbance spectroscopy can easily differentiate among oil, water, and gas. In addition, the technique can be used to determine the fractional portion of each phase in the flow. Complications arise when the reservoir fluids happen to be miscible with the mud filtrate system; for example, while sampling reservoir water in the presence of water-based mud filtrate, absorbance spectroscopy by itself is unable to differentiate among the fluids. Table 1 provides generic information about different fluid systems as well as the sensors used to differentiate the fluids. While there are other sources of correlation-based fluid-property information, the basic sensors mentioned are the ones used for correlations. As mentioned, each sensor provides detailed information for specific cases, but only sound speed provides a single-sensor solution for the conditions expected. Sound-Speed (SS) Measurement While acoustic data have long been used for reservoir characterization, data have been used for fluid characterization during downhole sampling for only a decade. Experience has shown that this measurement is sensitive enough to not only differentiate injection water or formation water but also to track and quantify small changes in oil compressibility—an important step in focused sampling. The measurement uses a pulse-echo technique based on the principle that an acoustic signal propagates approximately as a plane wave, and that the speed of sound is based on the distance the pulse travels divided by the time it took to traverse the distance. (SPWLA-2013-FFF). The 10-MHz piezoelectric transducer is mounted onto a machined flat surface on the flowline of RCX (the wireline formation testing tool reservoir characterization instrument) as schematically shown in Fig. 1. The travel path length is the distance between the two internal surfaces of the flowline. The result was a bulk measurement of the speed of sound across all the fluid flowing though the flowline. The only calibration needed is for this path length, which can differ due to slight machining variations. A calibrated sensor was able to differentiate fluids which exhibited sound-speed differences as small as 4.7 m/sec (0.5 msec/ft of sound-speed slowness).


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2840
Author(s):  
Lucija Jurko ◽  
Matej Bračič ◽  
Silvo Hribernik ◽  
Damjan Makuc ◽  
Janez Plavec ◽  
...  

Succinylation of proteins is a commonly encountered reaction in biology and introduces negatively charged carboxylates on previously basic primary amine groups of amino acid residues. In analogy, this work investigates the succinylation of primary amines of the synthetic polyelectrolyte polyallylamine (PAA). It investigates the influence of the degree of succinylation on the cytotoxicity and antibacterial activity of the resulting polymers. Succinylation was performed in water with varying amounts of succinic anhydride and at different pH values. The PAA derivatives were analyzed in detail with respect to molecular structure using nuclear magnetic resonance and infrared absorbance spectroscopy. Polyelectrolyte and potentiometric charge titrations were used to elucidate charge ratios between primary amines and carboxylates in the polymers. The obtained materials were then evaluated with respect to their minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa. The biocompatibility was assessed using mouse L929 fibroblasts. The degree of succinylation decreased cytotoxicity but more significantly reduced antibacterial efficacy, demonstrating the sensitivity of the fibroblast cells against this type of ampholytic polyelectrolytes. The obtained polymers were finally electrospun into microfiber webs in combination with neutral water-soluble polyvinyl alcohol. The resulting non-woven could have the potential to be used as wound dressing materials or coatings.


Author(s):  
John R. D. Hervey ◽  
Paolo Bombelli ◽  
David J. Lea-Smith ◽  
Alan K. Hulme ◽  
Nathan R. Hulme ◽  
...  

AbstractAbsorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml−1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1–4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.


2021 ◽  
Vol 119 (6) ◽  
pp. 061102
Author(s):  
Yusuke Arashida ◽  
Takayuki Suzuki ◽  
Shuhei Nara ◽  
Ikufumi Katayama ◽  
Yasuo Minami ◽  
...  

2021 ◽  
pp. 000370282110293
Author(s):  
Nathan A. Giauque ◽  
Callum E. Flowerday ◽  
Steven R. Goates

Often only small amounts of sample are available for spectroscopic analytical determinations. This work investigates the enhancement of signal in columns packed with silica particles. We propose that silica particles cause the light to scatter through the column, effectively increasing optical path length. Packed columns are shown to be effective with fluorescence spectroscopy, but results were inconclusive with absorbance spectroscopy.


Author(s):  
Julie Probst ◽  
Philip Howes ◽  
Paolo Arosio ◽  
Stavros Stavrakis ◽  
Andrew deMello

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2908
Author(s):  
Kazuo Umemura ◽  
Ryo Hamano ◽  
Hiroaki Komatsu ◽  
Takashi Ikuno ◽  
Eko Siswoyo

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.


Sign in / Sign up

Export Citation Format

Share Document