Data-Mining of Time-Domain Features from Neural Extracellular Field Data

Author(s):  
Samuel Neymotin ◽  
Daniel J. Uhlrich ◽  
Karen A. Manning ◽  
William W. Lytton
Keyword(s):  
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Zhiwei Ma ◽  
Juliana Y. Leung ◽  
Stefan Zanon

Production forecast of steam-assisted gravity drainage (SAGD) in heterogeneous reservoir is important for reservoir management and optimization of development strategies for oil sand operations. In this work, artificial intelligence (AI) approaches are employed as a complementary tool for production forecast and pattern recognition of highly nonlinear relationships between system variables. Field data from more than 2000 wells are extracted from various publicly available sources. It consists of petrophysical log measurements, production and injection profiles. Analysis of a raw dataset of this magnitude for SAGD reservoirs has not been published in the literature, although a previous study presented a much smaller dataset. This paper attempts to discuss and address a number of the challenges encountered. After a detailed exploratory data analysis, a refined dataset encompassing ten different SAGD operating fields with 153 complete well pairs is assembled for prediction model construction. Artificial neural network (ANN) is employed to facilitate the production performance analysis by calibrating the reservoir heterogeneities and operating constraints with production performance. The impact of extrapolation of the petrophysical parameters from the nearby vertical well is assessed. As a result, an additional input attribute is introduced to capture the uncertainty in extrapolation, while a new output attribute is incorporated as a quantitative measure of the process efficiency. Data-mining algorithms including principal components analysis (PCA) and cluster analysis are applied to improve prediction quality and model robustness by removing data correlation and by identifying internal structures among the dataset, which are novel extensions to the previous SAGD analysis study. Finally, statistical analysis is conducted to study the uncertainties in the final ANN predictions. The modeling results are demonstrated to be both reliable and acceptable. This paper demonstrates the combination of AI-based approaches and data-mining analysis can facilitate practical field data analysis, which is often prone to uncertainties, errors, biases, and noises, with high reliability and feasibility. Considering that many important system variables are typically unavailable in the public domain and, hence, are missing in the dataset, this work illustrates how practical AI approaches can be tailored to construct models capable of predicting SAGD recovery performance from only log-derived and operational variables. It also demonstrates the potential of AI models in assisting conventional SAGD analysis.


2017 ◽  
Vol 14 (S339) ◽  
pp. 201-201
Author(s):  
M. Lochner

AbstractIn the last decade Astronomy has been transformed by a deluge of data that will grow exponentially when near-future telescopes such as LSST and the SKA begin routine observing. Astroinformatics, a broad field encompassing many techniques in statistics, machine learning and data mining, is the key to extracting meaningful information from large amounts of data. This talk outlined Astroinformatics as a field, and gave a few examples of the use of machine learning and Bayesian statistics from my own work in survey Astronomy. The era of massive surveys in which we now find ourselves has the potential to revolutionise completely many fields, including time-domain Astronomy, but only if coupled with the powerful tools of Astroinformatics.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2600 ◽  
Author(s):  
Yaqiong Li ◽  
Zhanfeng Deng ◽  
Tongxun Wang ◽  
Guoliang Zhao ◽  
Shengjun Zhou

Norton equivalent circuit is a commonly used model in estimating harmonic current emissions of harmonic sources. It however cannot reflect the mutual coupling relationships among voltage and current in different harmonic orders. This paper proposes a new method to identify parameters in a coupled harmonic admittance model. The proposed method is conducted using voltage and current measurements and is based on least square estimation technique. The effectiveness of the method is verified through time-domain simulations for a grid-connected converter and also through field data obtained from a ±800 kV converter station. The experimental results showed that the proposed method presents higher accuracy in terms of harmonic current emission estimation compared with three Norton-base methods.


2017 ◽  
Vol 60 (1) ◽  
pp. 31-41
Author(s):  
Michael T. Hale

Abstract Method 519.7, Annex D of MIL-STD-810G, Environmental Engineering Considerations and Laboratory Tests, Change Notice 1 (MIL-STD-810G/CN1) outlines a prediction methodology for establishing a sine-on-random (SoR) structured spectrum that is intended to be representative of gunfire for use in cases in which there is an absence of field data. From that spectrum, the ramp modulated pulse (RMP) technique is proposed as a methodology to synthesize a time history with temporal characteristics that more realistically represent the temporal characteristics of gunfire than that of a SoR time history synthesized via classical SoR generation techniques. This paper provides an alternate technique to the RMP methodology presented in Method 519. The alternate technique is based on normalized exponentially weighted (NEW) time history generated via classical time domain techniques for a SoR vibration test. An outline of the NEW technique and an associated example are provided.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. R103-R119 ◽  
Author(s):  
Jianyong Bai ◽  
David Yingst ◽  
Robert Bloor ◽  
Jacques Leveille

Because of the conversion of elastic energy into heat, seismic waves are attenuated and dispersed as they propagate. The attenuation effects can reduce the resolution of velocity models obtained from waveform inversion or even cause the inversion to produce incorrect results. Using a viscoacoustic model consisting of a single standard linear solid, we discovered a theoretical framework of viscoacoustic waveform inversion in the time domain for velocity estimation. We derived and found the viscoacoustic wave equations for forward modeling and their adjoint to compensate for the attenuation effects in viscoacoustic waveform inversion. The wave equations were numerically solved by high-order finite-difference methods on centered grids to extrapolate seismic wavefields. The finite-difference methods were implemented satisfying stability conditions, which are also presented. Numerical examples proved that the forward viscoacoustic wave equation can simulate attenuative behaviors very well in amplitude attenuation and phase dispersion. We tested acoustic and viscoacoustic waveform inversions with a modified Marmousi model and a 3D field data set from the deep-water Gulf of Mexico for comparison. The tests with the modified Marmousi model illustrated that the seismic attenuation can have large effects on waveform inversion and that choosing the most suitable inversion method was important to obtain the best inversion results for a specific seismic data volume. The tests with the field data set indicated that the inverted velocity models determined from the acoustic and viscoacoustic inversions were helpful to improve images and offset gathers obtained from migration. Compared to the acoustic inversion, viscoacoustic inversion is a realistic approach for real earth materials because the attenuation effects are compensated.


Sign in / Sign up

Export Citation Format

Share Document