Analytical and numerical models for tsunami run-up

2007 ◽  
pp. 209-236 ◽  
Author(s):  
Per A. Madsen ◽  
David R. Fuhrman
Author(s):  
Takuya Miyashita ◽  
Nobuhito Mori

The inundation of the 2011 Tohoku Earthquake Tsunami showed complex behavior over the land. According to the surveys of the Tohoku Earthquake Tsunami in 2011, the behavior of tsunami in urban areas was different from that in rural areas and the damage was not only dependent on the inundation heights but also the local momentum. The buildings are commonly excluded and smoothed off in the topography in the conventional inundation simulation but it’s important to understand the local characteristics of tsunami run-up in urban areas. The purpose of this study is to understand and validate numerical models of tsunami in the urban area.


2017 ◽  
Author(s):  
Íñigo Aniel-Quiroga ◽  
Omar Quetzalcóatl ◽  
Mauricio González ◽  
Louise Guillou

Abstract. Tsunami run-up is a key value to determine when calculating and assessing the tsunami hazard in a tsunami-prone area. Run-up is accurately calculated by means of numerical models, but these models require high-resolution topobathymetric data, which are not always available, and long computational times. These drawbacks restrict the application of these models to the assessment of small areas. As an alternative method, to address large areas, empirical formulae are commonly applied to estimate run-up. These formulae are based on numerical or physical experiments on idealized geometries. In this paper, a new methodology is presented to calculate tsunami hazard at large scales. This methodology determines the tsunami flooding by using a coupled model that combines a nonlinear shallow water model (2D-H) and a volume-of-fluid model (RANS 2D-V) and applies the optimal numerical scheme in each phase of the tsunami generation-propagation-inundation process. The hybrid model has been widely applied to build a tsunami run-up database (TRD). The aim of this database is to form an interpolation domain with which to estimate the tsunami run-up of new scenarios without running a numerical simulation. The TRD was generated by simulating the propagation of parameterized tsunami waves on real non-scaled profiles. A database and hybrid numerical model were validated using real and synthetic scenarios. The new methodology provides feasible estimations of the tsunami run-up; engineers and scientists can use this methodology to address tsunami hazard at large scales.


2021 ◽  
Author(s):  
Jun-Whan Lee ◽  
Jennifer Irish ◽  
Robert Weiss

Rapid prediction of the spatial distribution of the run-up from near- field tsunamis is critically important for tsunami hazard characterization. Even though significant advances have been made over the last decade, physics- based numerical models are still computationally intensive. Here, we present a response surface methodology (RSM)-based model called the tsunami run-up response function (TRRF). Derived from a discrete set of tsunami simulations, TRRF can produce a rapid prediction of a near-field tsunami run-up distribution that takes into account the influence of variable local topographic and bathymetric characteristics in a given region. This new method reduces the number of simulations required to build an RSM model by separately modeling the leading order contribution and the residual part of the tsunami run-up distribution. Using the northern region of Puerto Rico as a case study, we investigated the performance (accuracy, computational time) of the TRRF. The results reveal that the TRRF achieves reliable prediction while reducing the prediction time by six orders of magnitude (computational time: < 1 second per earthquake).


2018 ◽  
Vol 18 (5) ◽  
pp. 1469-1491 ◽  
Author(s):  
Íñigo Aniel-Quiroga ◽  
Omar Quetzalcóatl ◽  
Mauricio González ◽  
Louise Guillou

Abstract. Tsunami run-up is a key value to determine when calculating and assessing the tsunami hazard in a tsunami-prone area. Run-up can be accurately calculated by means of numerical models, but these models require high-resolution topobathymetric data, which are not always available, and long computational times. These drawbacks restrict the application of these models to the assessment of small areas. As an alternative method, to address large areas empirical formulae are commonly applied to estimate run-up. These formulae are based on numerical or physical experiments on idealized geometries. In this paper, a new methodology is presented to calculate tsunami hazard at large scales. This methodology determines the tsunami flooding by using a coupled model that combines a nonlinear shallow water model (2D-H) and a volume-of-fluid model (RANS 2D-V) and applies the optimal numerical models in each phase of the tsunami generation–propagation–inundation process. The hybrid model has been widely applied to build a tsunami run-up database (TRD). The aim of this database is to form an interpolation domain with which to estimate the tsunami run-up of new scenarios without running a numerical simulation. The TRD was generated by simulating the propagation of parameterized tsunami waves on real non-scaled profiles. A database and hybrid numerical model were validated using real and synthetic scenarios. The new methodology provides feasible estimations of the tsunami run-up; engineers and scientists can use this methodology to address tsunami hazard at large scales.


2021 ◽  
Vol 16 (7) ◽  
pp. 1015-1029
Author(s):  
Ako Yamamoto ◽  
Yuki Kajikawa ◽  
Kei Yamashita ◽  
Ryota Masaya ◽  
Ryo Watanabe ◽  
...  

Tsunami sediments provide direct evidence of tsunami arrival histories for tsunami risk assessments. Therefore, it is important to understand the formation process of tsunami sediment for tsunami risk assessment. Numerical simulations can be used to better understand the formation process. However, as the formation of tsunami sediments is affected by various conditions, such as the tsunami hydraulic conditions, topographic conditions, and sediment conditions, many problems remain in such simulations when attempting to accurately reproduce the tsunami sediment formation process. To solve these problems, various numerical models and methods have been proposed, but there have been few comparative studies among such models. In this study, inter-model comparisons of tsunami sediment transport models were performed to improve the reproducibility of tsunami sediment features in models. To verify the reproducibility of the simulations, the simulation results were compared with the results of sediment transport hydraulic experiments using a tsunami run-up to land. Two types of experiments were conducted: a sloping plane with and without coverage by silica sand (fixed and movable beds, respectively). The simulation results confirm that there are conditions and parameters affecting not only the amount of sediment transport, but also the distribution. In particular, the treatment of the sediment coverage ratio in a calculation grid, roughness coefficient, and bedload transport rate formula on the fixed bed within the sediment transport model are considered important.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


2017 ◽  
Author(s):  
Francesc X. Roig-Munar ◽  
Josep M. Vilaplana ◽  
Antoni Rodríguez-Perea ◽  
José A. Martín-Prieto ◽  
Bernadí Gelabert

Abstract. Large boulders have been found on marine cliffs of 24 study areas of Minorca, Balearic Archipelago. These large imbricated boulders, of up to 229 tonnes, are located on platforms that conform the rocky coastline of Minorca, several tenths of meters from the edge of the cliff, up to 15 m above the sea level, and kilometres away from any inland escarpment. They are mostly located on the southeast coast of the island, and numerical models have identified this coastline as a high tsunami impact zone. The age of the boulders in most of the studied localities show a good correlation with historical tsunamis. Age of the boulders, direction of imbrication and estimation of run-up necessary for their placement, indicate dislodging and transport by North Africa tsunami waves that hit the coastline of Minorca.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


Sign in / Sign up

Export Citation Format

Share Document