scholarly journals A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator

Author(s):  
Daniel R. L. Brown ◽  
Kristian Gjøsteen
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Gehring ◽  
Cosmo Lupo ◽  
Arne Kordts ◽  
Dino Solar Nikolic ◽  
Nitin Jain ◽  
...  

AbstractQuantum random number generators promise perfectly unpredictable random numbers. A popular approach to quantum random number generation is homodyne measurements of the vacuum state, the ground state of the electro-magnetic field. Here we experimentally implement such a quantum random number generator, and derive a security proof that considers quantum side-information instead of classical side-information only. Based on the assumptions of Gaussianity and stationarity of noise processes, our security analysis furthermore includes correlations between consecutive measurement outcomes due to finite detection bandwidth, as well as analog-to-digital converter imperfections. We characterize our experimental realization by bounding measured parameters of the stochastic model determining the min-entropy of the system’s measurement outcomes, and we demonstrate a real-time generation rate of 2.9 Gbit/s. Our generator follows a trusted, device-dependent, approach. By treating side-information quantum mechanically an important restriction on adversaries is removed, which usually was reserved to semi-device-independent and device-independent schemes.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xing Lin ◽  
Shuang Wang ◽  
Zhen-Qiang Yin ◽  
Guan-Jie Fan-Yuan ◽  
Rong Wang ◽  
...  

AbstractA quantum random number generator (QRNG) as a genuine source of randomness is essential in many applications, such as number simulation and cryptography. Recently, a source-independent quantum random number generator (SI-QRNG), which can generate secure random numbers with untrusted sources, has been realized. However, the measurement loopholes of the trusted but imperfect devices used in SI-QRNGs have not yet been fully explored, which will cause security problems, especially in high-speed systems. Here, we point out and evaluate the security loopholes of practical imperfect measurement devices in SI-QRNGs. We also provide corresponding countermeasures to prevent these information leakages by recalculating the conditional minimum entropy and adding a monitor. Furthermore, by taking into account the finite-size effect, we show that the influence of the afterpulse can exceed that of the finite-size effect with the large number of sampled rounds. Our protocol is simple and effective, and it promotes the security of SI-QRNG in practice as well as the compatibility with high-speed measurement devices, thus paving the way for constructing ultrafast and security-certified commercial SI-QRNG systems.


Sign in / Sign up

Export Citation Format

Share Document