scholarly journals A Robust Fingerprint Matching Approach: Growing and Fusing of Local Structures

Author(s):  
Wenquan Xu ◽  
Xiaoguang Chen ◽  
Jufu Feng
Author(s):  
Matthew Morse ◽  
Jesse Hartloff ◽  
Thomas Effland ◽  
Jim Schuler ◽  
Jennifer Cordaro ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2018 ◽  
Author(s):  
William A. Shirley ◽  
Brian P. Kelley ◽  
Yohann Potier ◽  
John H. Koschwanez ◽  
Robert Bruccoleri ◽  
...  

This pre-print explores ensemble modeling of natural product targets to match chemical structures to precursors found in large open-source gene cluster repository antiSMASH. Commentary on method, effectiveness, and limitations are enclosed. All structures are public domain molecules and have been reviewed for release.


2016 ◽  
Author(s):  
Marlon Lucas Gomes Salmento ◽  
Fernando Miranda Vieira Xavier ◽  
Bernardo Sotto-Maior Peralva ◽  
Augusto Santiago Cerqueira

2016 ◽  
Author(s):  
Bernardo Sotto-Maior Peralva ◽  
Fernando Miranda Vieira Xavier ◽  
Augusto Santiago Cerqueira ◽  
David Sérgio Adães Gouvea ◽  
Marcos Fidelis Costa Campos

Sign in / Sign up

Export Citation Format

Share Document